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Abstract—Remote sensing of sea surface salinity (SSS) near land
is difficult due to land contamination. In this article, we assess SSS
retrieved from the soil moisture active passive (SMAP) mission
in coastal region. SMAP SSS products from the Jet Propulsion
Laboratory (JPL), and from the remote sensing systems (RSS) are
collocated with in situ data collected by saildrones during the North
American West Coast Survey. Satellite and saildrone salinity mea-
surements reveal consistent large-scale features: the fresh water
(low SSS) assocciated with the Columbia River discharge, and the
relatively salty water (high SSS) near Baja California associated
with regional upwelling. The standard deviation of the difference
for collocations with SMAP Level 3 (eight days average) between
40 and 100 km from land is 0.51 (0.56) psu for JPL V5 (RSS V4
70 km). This is encouraging for the potential application of SMAP
SSS in monitoring coastal zone freshwater particularly where there
exists large freshwater variance. We analyze the different land
correction approaches independently developed at JPL and RSS
using SMAP level 2 matchups. We found that JPL’s land correction
method is more promising in pushing SMAP SSS retrieval towards
land. For future improvement, we suggest implementing dynamic
land correction versus the current climatology-based static land
correction to reduce uncertainty in estimating land contribution.
In level 2 to level 3 processing, a more rigorous quality control
may help to eliminate outliers and deliver reliable level 3 products
without over-smoothing, which is important in resolving coastal
processes such as fronts or upwelling.

Index Terms—Coastal, retrieval algorithm, saildrone, sea
surface salinity (SSS), soil moisture active passive (SMAP),
validation.

I. INTRODUCTION

IN COASTAL oceans, satellite remote sensing of sea sur-
face salinity (SSS) provides a unique capability of study-

ing the terrestrial-ocean connection within global water and
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biogeochemical cycles. Seasonal and interannual variation of
freshwater inputs from river discharge are reflected in coastal
SSS which regulates (along with ocean temperature and pres-
sure) the density of upper layer seawater and drives the dynamics
of various coastal processes, e.g., upwelling, fronts, and hurri-
cane landfall [1], [2]. Previous studies have demonstrated the
capability of satellite SSS for monitoring the river influence in
the Gulf of Mexico [3], [4] and the Bay of Bengal [5], and
for depicting the seasonal and interannual variation at world
major river mouths [6]. However, the uncertainty of satellite SSS
increases near land (exceeding 1 psu within 100 km distance
from the coast) and data coverage was inconsistent in coastal
regions between SSS products even based on same satellite
measurements [4]. With growing scientific and public interest
to coastal SSS, it is critical to improve the accuracy of satellite
retrieval as close to land as possible to resolve coastal processes
[1]. This article uses in situ data collected by saildrones to assess
the performance of two soil moisture active passive (SMAP) [7]
SSS data sets produced at the Jet Propulsion Laboratory (JPL)
[8] and remote sensing systems (RSSs) [9] and identify possible
issues in retrieval algorithms particularly the land correction for
future improvement.

The accuracy of retrieved SSS degrades near land due to
land contamination, which is the intrusion into the radiometer
receiver of land surface emission that is much higher than sea
surface emission at L-band. Even when the main lobe of the
SMAP antenna pattern is over water, a portion of energy received
in the antenna sidelobes could originate from land surfaces. De-
pending on the observing geometry of the spaceborne instrument
at any particular moment, radiometer measurements could be
affected by landmass presence from up to a thousand kilometers
away [10]. To mitigate the effect of land contamination, JPL
and RSS have independently developed SMAP land correction
algorithms, which remove an estimate of the land contribution
to the radiometer footprint from the measured brightness tem-
perature (TB) prior to SSS retrieval. Over- or under-estimation
of the land correction term will result in biases of the retrieved
SSS (level-2). Most previous validation studies compared in situ
salinity with satellite SSS of level-3, which is created on uniform
grids by averaging multiple days of level-2 retrievals. Although
level-3 validations provided useful guidance for scientific data
applications, its implication on remaining issues in the land
correction algorithm could be blurred by different filtering or
smoothing that was performed in level-2 to level-3 processing. In
this article, we use both level-2 and level-3 SMAP data products
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collocated with in situ saildrones measurements to assess the
performance of JPL and RSS land correction algorithms to
identify areas for future improvements.

A saildrone uncrewed surface vehicle is a steerable platform
designed based on wind-powered propulsion technology, carry-
ing a suite of solar-powered meteorological and oceanographic
sensors to perform autonomous long-range data collection mis-
sions in harsh ocean environments [11], [12], [13]. Using two
saildrone deployments in the Arctic Ocean, [14] demonstrated
that SMAP SSS observations resolved the runoff signal associ-
ated with the Yukon River with high correlation between SMAP
products and saildrone measurements. In this article, we use
saildrone data collected during the North American West Coast
Survey (NAWCS) in 2018 and 2019 [15]. In addition to in situ
salinity for satellite SSS validation, the sea surface temperature
(SST) and surface wind speed simultaneously collected by sail-
drones also provide useful information to determine whether
the biases of coastal SSS retrieval were caused by possible
deficiency in the land correction algorithm or related to other
error sources [16].

Data sources and collocation method are given in Section II.
Section III presents results of the validation of SMAP level-3
SSS products, and the diagnostic analysis of the bias of level-2
matchups which are the direct output of SMAP SSS retrieval
algorithms. In Section IV, we discuss potential issues of the
JPL and RSS land correction algorithm, and level-2 to level-3
processing. Conclusion is given in Section V.

II. DATA AND METHOD

A. Satellite Salinity Products

We use JPL version-5 (V5) [8] and RSS version-4 (V4)
[9] Level-2 and level-3 SMAP SSS data sets. All data can
be accessed from the physical oceanography distributed active
archive center at https://podaac.jpl.nasa.gov. Here we briefly
summarize the basics of each product, with further details of the
retrieval algorithm and data processing given in [8] for JPL V5
and [9] for RSS V4 products.

1) SMAP SSS Level-2 Products: Level-2 (L2) data are the
direct output from the retrieval algorithm for each satellite orbit.

The JPL combined active passive [17], [18] retrieval algorithm
is run for each salinity-wind cells (SWCs) on a swath grid (L2B)
posted at approximately 25 km in spacing, although the intrinsic
resolution is slightly larger than 40 km due to edge-overlap in
grouping level-1 TB measurements into SWCs [19]. Level-1
measurements collected in the SWC (excluding pixels flagged
as ice or land) are averaged for the H-pol and V-pol TB for fore
and aft looks separately to create up to four values for each SWC,
which are inputs to the L2B retrieval algorithm.

RSS provides two L2 SSS data sets at 40 and 70 km res-
olution respectively (named RSS40 km and RSS70 km). The
RSS retrieval algorithm is run on a fixed 0.25° Earth grid at
approximately 40 km spatial resolution (L2C) after resampling
the level-1 SMAP measurements onto the same grid using
a Backus-Gilbert type optimum interpolation [20], [21]. The
resulting salinity product is called RSS40 km. RSS70 km is
the equal-weighted average of RSS40 km over next-neighbors

including the center pixel. Both RSS40 km and RSS70 km gives
two SSS values at each grid point corresponding to the fore- and
aft-look respectively (separately retrieved), which are averaged
to produce one SSS value at each grid point for this article
(named RSS40 km_L2 and RSS70 km_L2).

2) SMAP SSS Level-3 Products: All level-3 (L3) data are
created from L2 products on the 0.25°x0.25° latitude-longitude
uniform grid monthly and daily. The monthly maps are created
by averaging of all valid data within the calendar month, and
the daily maps are eight-day running means. JPL and RSS
processing differs particularly in data filtering.

JPL L2 to L3 processing uses Gaussian weighting to in-
terpolate L2 SSS onto the map grid with a search radius of
approximately 45 km and a half-power radius of 30 km. L2 data
are filtered before aggregation into the level-3 map product. To
increase data inclusion, the quality checks for the level-3 data
product are somewhat relaxed, and only excluding land, ice, and
high ancillary winds (bits 5, 7, and 8 of the quality flag).

RSS provides two L3 products of 40 and 70 km resolution,
which are average of 8 days running mean of level-2 data after
averaging for a given day the two SSS values retrieved from for-
and aft- look. Note that RSS creates 70 km L3 maps directly
from L2 40 km SSS (instead from L3 40 km) with more rigorous
filtering.

B. Saildrone Data

We use saildrone data from the NAWCS in 2018 and 2019.
Sponsored by NOAA, the goal of NAWCS was to augment
ship-based fish stock assessment to improve the effectiveness
and efficiency of fisheries management. The saildrone fleet of
NAWCS collected data over a near 20° latitude range from
northern Baja California to north of the Columbia River mouth
extending 300 km seaward (with more frequent sampling within
100 km from land). Fig. 1 shows salinity measured by the
conductivity, temperature and depth (CTD) sensor onboard sail-
drone at depth of 0.6 m and the time and latitudes that NAWCS
cruises collected the data.

C. SMAP-Saildrone Matchups

There exists large discrepancy between SMAP and saildrone
measurements in terms of their sampling frequency and spatial
scales. SMAP’s footprint is ∼25 km with a revisit time of
eight days, while Saildrone collects data every one minute.
Our collocation strategy was designed so the final matchups
represent the intrinsic spatial scale of SMAP data.

The L2 SMAP products were collocated with the saildrone
data within 25 km and 24 h, using the Pyresample kd-tree
resample_nearest method and SciPy spatial kd-tree method
for quick nearest neighbor lookup [22], [23]. For L3 SMAP
products, all saildrone measurements collected in that L3 daily
time stamp (centered at noon of the day) were matched with the
nearest L3 grid points. Since saildrone data is sampled at 1-min
intervals, multiple sailldrone observations will match with the
same SMAP data point, for either L2 or L3 products. There-
fore, we average all saildrone observations that matched with

https://podaac.jpl.nasa.gov
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Fig. 1. (a) Saildrone SSS. (b) Times and latitudes that NAWCS saildrone cruises collected data where color represents individual saildrones. The solid red bar
indicates a period when SMAP observation halted (June 20 to July 22, 2019) due to instrument problem.

Fig. 2. Sea surface salinity observed at locations of saildrone North American West Coast Survey 2018–2019. (a) Saildrone CTD salinity, and SMAP L3 SSS of
(b) JPL, (c) RSS 70 km, and (d) RSS 40 km.

the same SMAP observation into a single saildrone datapoint
(equal-weighted), providing a unique matchup pair.

III. RESULTS

A. Validation of Level 3 SSS

Fig. 2 shows salinity measured at the locations of NAWCS by
saildrone CTD and three collocated SMAP Level-3 SSS prod-
ucts. The large-scale salinity features depicted by saildrone and
all satellite products are quite consistent: low SSS is observed

near the Columbia River mouth under the influence of river
discharge; and the relatively high SSS is observed near Baja
California likely associated with coastal upwelling. However,
there is large discrepancy in the data coverage near land. The data
gap near coast in RSS70km_L3 product is much wider than that
of the JPL_L3 product, and there are fewer matchups away from
land (near 40°N). We included RSS40km_L3 [see Fig. 2(d)]
as a reference with understanding that RSS70kmL3 is the RSS
official Level-3 product. Many outliers with extremely large SSS
values near coast observed in RSS40km_L3 [see Fig. 2(d)] are
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Fig. 3. SMAP Level3 and saildrone matchups. (a)–(c) Plot of salinity difference, dSSS (SMAP L3-CTD) versus distance from land. (a) JPL V5, (b) RSS V4
40 km, (c) RSS V4 70 km, grey circles are original collocation. Dark solid line/dot in (a)–(c) are bin averaged dSSS which are replotted in (d), and bin standard
deviation (e), and number of collocations (f) which are the same for RSS V4 40 and 70 km products.

TABLE I
COMPARISON OF THE COLLOCATION OF SAILDRONE CTD AND COLLOCATED SMAP LEVEL 3 AND LEVEL 2 SSS

absent from RSS70km_L3 [see Fig. 2(c)], which is the result
of additional filtering implemented in RSS L2 to L3 processing
(see Section III-B).

Fig. 3 shows the bias (dSSS = SMAP L3 minus CTD) as
function of the distance to land for all three satellite products.
Statistics given in Table I are the bias, standard deviation and

number of collocations for each SMAP product in three coastal
zones. Away from land at distance from 100 to 300 km, all three
SMAP products have small bias against saildrones with standard
deviation less than 0.5 psu. Most SMAP/saildrone collocations
were found in the zone of 40 to 100 km from land; and standard
deviation of the difference (StdD) over near 1000 pairs were
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0.51 psu for JPL L3 SSS and 0.56 psu for RSS70km_L3. In the
zone closest to land within 40 km, StdD increased to 1.03 psu
for JPL_L3 and 0.67 psu for RSS70km_L3, while the number
of matchups for JPL_L3 (630 pairs) was more than doubled
of that for RSS70km_L3 (255 pairs). The statistical result is
considered very encouraging, particularly in the coastal area 40
km from the land, since satellite SSS with uncertainty less than
0.5 psu could provide useful information in studying processes
with large salinity variations.

B. Validation of Level 2 SSS

The validation based on L3 matchups (see Section III-A)
provides important uncertainty analysis of SMAP SSS products
in the coastal region. However, to identify possible deficiencies
in the retrieval algorithm, specifically the land correction for
this article, we need to look at level 2 data which is the direct
output from the retrieval algorithm. Examining the differences
of L2 and saildrone matchups will allow us to understand exactly
where and how well the land correction algorithm works for SSS
retrieval. The quality flag associated with each L2 retrieval can
be used to identify information useful for algorithm improve-
ments. Such information might be concealed in the L3 matchups,
after filtering and spatiotemporal averaging involved in the L2
to L3 process.

We created the database of SMAP L2 and saildrones for
JPL_L2, RSS40km_L2 and RSS70km_L2. We included anal-
ysis for RSS70km_L2 here for completeness, keeping in mind
that RSS40km_L2 is the only output from RSS retrieval, while
RSS70km_L2 is the spatial average of nine nearest neighbors
[9]. We then select matchups used for validation using the SMAP
quality flags which are provided in L2 data files. Since applying
the whole set of RSS quality flag (bits 0 to 15) would completely
eliminate all RSS40km_L2 matchups, we used a subset of the
quality flags for each SMAP product. Note that since there is
no one-to-one correspondence between the quality flags for JPL
and RSS products, caution was taken to ensure the selected L2
matchups were obtained under similar conditions. Specifically,
for JPL_L2 we excluded those if any of bit-0, 1, 2, and 4 of
the JPL quality flag is set [Fore et al., 2020], while ignored
bit-5 (wind speed > 20 m/s), −6 (SST < 5°C) and −7 (land
detected in SWC). And for RSS40km_L2 we excluded those
if any of bits 0–10 of the RSS quality flag is set [9], while
ignoring bit-11 (SST <5°C), −12 (wind speed > 15 m/s), −13
(light land contamination, Gland > 0.001), −14 (light sea ice
contamination, ice fraction > 0.001), −15 (rain > 0.1 mm/h).

Fig. 4 shows the distribution of Level-2 matchups with qual-
ity control described above, for JPL_L2, RSS40km_L2 and
RSS70km_L2. Statistics of L2 SSS validation with saildrones
are also given in Table I. Comparing with L3 matchups, the StdD
for L2 increased in all three distance zones which is expected
a result of SMAP L2 to L3 processing in reducing noise. We
noticed that compared with L3 matchups, the number of L2
matchups are reduced to a different degree for JPL and RSS
products in different distance zones. Particularly puzzling was
that there were only 13 pairs of JPL_L2 matchups [see Fig. 4(a)]
found within 40 km from land, while 630 pairs were found for

JPL_L3 [see Fig. 3(a)]. This is because during JPL L2 to L3
processing, a value on a specific L3 grid point is the average of
all valid L2 retrievals within 45 km radius in eight days with
Gaussian weighting. This procedure was performed globally in
JPL L2 to L3 processing, which has the effect of propagating
valid retrievals towards land. On the other hand, RSS interpolate
SMAP measurements to fixed grid which are exactly the same
for RSS L2 and L3 products. Specifically, RSS40km_L3 is the
average of nine RSS40km_L2 values (4 days before and after),
and RSS70km_L3 is the average of nine RSS40km_L2 nearest
neighbors based on data from each of eight days with rigorous
filtering. We point out that the interpolation RSS implemented
before L2 retrieval may also propagate SMAP observation to-
wards to coastline as well.

C. Diagnostic Analysis Based on L2 Matchups

We examine the distribution of the difference of SMAP
L2 SSS and collocated saildrone salinity (dSSS) associated
with ancillary parameters in the SSS retrieval. Any system-
atic patterns of dSSS may reveal problems in the retrieval
algorithm. Fig. 5 shows dSSS (color coded) of L2 matchups
versus SST (y-axis) and distance to land (x-axis), where the
top row [see Fig. 5(a)–(c)] shows all L2 matchups without
applying any quality flags, and the bottom row [see Fig. 5(e)–
(g)] shows data with quality control same as those shown in
Fig. 4.

JPL_L2 SSS [see Fig. 5(a) and (d), left column] performs
well in the coastal area 40 km away from land. The bias
against saildrone measurements is generally small, with most
|dSSS_JPL_L2| < 2psu (light color). The few points with
large biases (dark red or dark blue color) are randomly dis-
tributed. Particularly encouraging is the similarity between
40–100 km and>100 km zones, with no systematic dependence
on the distance to land or SST. Within 40 km to land, however,
the retrieved SSS are noisy [see Fig. 5(a)], with points of positive
or negative biases mixed for SST less than 18°C and more
dominated by positive dSSS above 18°C. Indeed, majority of
these points with large biases seen in Fig. 5(a) are effectively
eliminated by the JPL quality flags applied, resulting in the rather
clean pattern of Fig. 5(d).

In contrast, RSS40km_L2 [see Fig. 5(b)] shows systematic
pattern of large biases in the coastal zone: from large pos-
itive dSSS_RSS40km_L2 (>2 psu) clustered around 40 km
distance to land, and a large negative dSSS_RSS40km_L2
(<−2psu) from 50 to 80 km from land. This systematic pattern
remained when we excluded points according to RSS quality
flags as described in Section III-B [see Fig. 5(e)]. However,
when we applied additional RSS land filtering criteria (excluding
RSS40km_L2 where Fland ≥ 0.0001 or Gland > 0.04), the
negative dSSS_RSS40km_L2 cluster disappeared [see Fig. 5(c)
and (f), right column], regardless of quality control. It is still
puzzling to us why the RSS land filtering would eliminate points
further away from land.

Similar dSSS patterns are found with respected to surface
wind speed (see Fig. S1) and latitude (see Fig. S2).
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Fig. 4. SMAP Level 2 and saildrone matchups. (a)–(c) Scatter plot of salinity difference (dSSS = SMAP -saildrone) versus distance from land. (a) JPL_L2.
(b) RSS40km_L2. (c) RSS70km_L2, grey circles are original collocation. Dark solid line/dot in (a)–(c) are bin averaged dSSS. (d)–(f) are statistics in distance bin
(10 km). (d) Biases. (e) Standard deviation. (f) Number of collocations which are same for RSS40km_L2 and RSS70km_L2.

In summary, comparison of saildrone and SMAP L2 matchups
indicated potential issues in the land correction algorithms. Pos-
itive dSSS (SMAP SSS retrieval too low) may result from under
correction (corrected TB too high), and vice versa, negative
dSSS (SMAP SSS retrieval too high) may result from over
correction (corrected TB too low).

IV. DISCUSSION

The discrepancies between SMAP SSS products in coastal
regions (see Section III) are rooted in the different approaches
to mitigate land contamination between JPL and RSS retrieval
algorithms. Radiometer measured TB represents integrated en-
ergy that is received from the entire visible disk of the Earth
weighted by the antenna gain. Even when the main lobe of the
SMAP antenna pattern is over water, a portion of the energy
received could be due to land, and can have a significant bias
on the retrieved SSS since emissivity from land surface is much
higher than that from water surface at L-band. As illustrated in
a simplified sketch (see Fig. 6), JPL’s land correction algorithm

attempts to remove emissivity received from the land portion
within main-lobe in a land-water mixed footprint, while RSS’s
method is limited to sidelobe correction which removes emissiv-
ity from outside of the main lobe. Whenever SMAP’s footprint
touches land, RSS’s method breaks down. This causes a data gap
at the coast at least as wide as 40 km (which is approximately the
diameter of SMAP footprint). Moreover, collocation of SMAP
L2 with saildrone measurements indicates that RSS’s coastal
data void area extends beyond the SMAP footprint size up to
around 80 km from land. In contrast, JPL’s land correction
delivered encouraging results in the coastal zone 40 km away
from land. With respect to saildrone measurements, JPL SSS
retrieved 40–100 km from land has biases on the similar order
as those further away from land, with no systematic error in
terms of distance to land or ancillary parameters (SST, wind
speed or latitude) (see Fig. 5 and Fig. S1 and S2). However, data
within 40 km from land are very noisy, and most L2 retrievals
are flagged and not used in JPL L2 to L3 processing. Apparently,
to pursue the goal of pushing SSS retrieval as close to land as
possible, JPL’s land correction method is more promising. Next,
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Fig. 5. Distribution of dSSS (SMAP L2 – saildrone, color coded) in 2-dimentional space of (x-axis) distance to land and (y-axis) saildrone SST. (a) and
(d) SMAP SSSJPL. (b) and (e) SSSRSS40 km. (c) and (f) SSSRSS40 km with RSS land filtering (gland ≤ 0.04 and fland ≤ 0.001). Panels in the top row (a)–(c)
are all L2 retrieval without any quality control, and in the bottom row (d)–(f) are a subset of L2 output with a set of quality flags applied (see text for details).

Fig. 6. Sketch illustrates footprint with mixed land/water signature and the
difference of land correction methods developed at JPL and RSS.

we briefly review JPL’s land correction method and identify
areas for potential future improvements.

JPL’s land correction algorithm has been developed and
implemented for SMAP SSS retrieval for earlier release [8].
Basically, it is a method to remove contribution due to land
from observed TB (TBobs.), and use the corrected TB which
represents emissivity from the water portion (TBwater) to
retrieve SSS. Under the assumption that TBwater and TBland

are uniform for water and land portion, respectively, we have

TBobs. = TBwater (1− fland) + TBlandfland (1)

where fland1 is the land fraction given by,

fland (x, y) =

∫
FOV

F (x, y)G (θ, ϕ) dΩ/

∫
FOV

G (θ, ϕ) dΩ. (2)

Here, G is the SMAP antenna gain pattern, F(x,y) is 1 (over
land) or 0 (over water) at antenna sampling location projected

1fland is called as gland in RSS data file and documents [Meissner et al,
2019].
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on the earth surface location (x,y), dΩ is the solid angle of
integration, and the integration domain field of view (FOV) is
over the entire visible disk of Earth including side-lobes and
main-lobe. To identify land and sea components, we used the
24-category Land Cover and Land Use maps from the United
States Geological Survey which is posted at 30 arcs resolution
[24]. Note TBwater is equivalent to the land corrected TB in
relevant documentation [Fore et al. 2020]. In theory one can
integrate over the antenna pattern using a high-resolution land
mask and climatological land TB to compute the land contami-
nation explicitly for every footprint. However, this is not feasible
as it would require excessive computing time. Therefore, a look-
up-table (LUT) approach is developed. The land TB climatology
maps were first generated from SMAP measurements for V and
H polarizations for each month. Then, for all ocean points within
1000 km of land, a value called TBland,near is computed by the
averaging TB value for all land points within 1000 km of that
ocean point. This climatology map of TBnear,land represents the
expected TB of land that contributes to the observation over
the ocean for that particular location and time. To correct a
given TB observation, the pre-generated LUTs for fland and
TBland,near are interpolated to the measurement location and
time, and substituted in (1) replacing TBland by TBland,near to
obtain

TBwater =
Tobs − flandTnear,land

1− fland
. (3)

The uncertainty of TBwater given by (3) can be derived from
error propagation laws as

δTBwater =

(
1

1− fland

)2

δTobs +

(
Tobs − Tnear,land

(1− fland)
2

)2

δfland

+

( −fland

1− fland

)2

δTnear,land (4)

where δ indicates variance of a variable. The first term of (4)
is associated with the observation noise, the second term is
the noise associated with the uncertainty of fland, and the third
term is the noise associated with the estimation error of land
surface TB. We show (see Fig. 7) the relative contribution of each
noise term to the total variance of TBwater, by making a rough
estimation of δTobs = (1K)2, δfland = (fland/4)2, δTnear,land

= (10K)2 and Tobs-Tnear,land = 20K [Fore et al., 2020]. The
observation noise dominates the total variance for small land
fraction up to fland = 0.1; beyond that the noise term due to
variance of land TB estimation dramatically increases, causing
δTBwater to be too large for meaningful SSS retrieval.

Based on above analysis, we consider the following for future
improvements of JPL’s SMAP SSS product in coastal regions.
With regard to the development of a dynamical approach for
land correction, and is for improving the L2 to L3 processing.

1) Reduce the Uncertainty of Land TB: As described ear-
lier, JPL had produced offline the monthly TBland cli-
matology LUT based on SMAP measurements with the
consideration of operational latency for SSS retrieval.
This approach could introduce errors in TBland due to
the ignored anomaly of land surface emissivity associated
with interannual variability or synoptic weather systems.

Fig. 7. Variance of TBwater (black) and contribution of each noise term in
(4) associated with random error of observation (blue), fland (red) and TBland

(green) as functions of land fraction.

One possible option for a future product is to develop a
dynamical approach, that is to replace the current static
climatological TBland by using simultaneously measured
SMAP TB over land. A similar approach has been de-
veloped to improve SMAP TB in coastal regions for soil
moisture retrieval [25] and SMAP SSS retrieval near the
ice edge [26].

2) Optimize the Estimation of TBnear,land: Currently, LUT
for TBnear,land is computed by the averaging TB value
for all land points within 1000 km of an ocean point. It
is still an open question what is an appropriate choice
of averaging area to estimate TBnear,land. If the area is
too large, estimated TBnear,land may not be representative
for the land portion within the footprint and the variance
will increase due to large scale land surface variation. On
the other hand, searching an area too small may not find
measurements completely over land. Taking the advantage
of recently released SMAP TB (version 5) already cor-
rected for water body contribution [25], it is not necessary
to impose the requirement on footprint’s complete land
coverage, and therefore reduce the search area to find
TBnear,land closer to the coastal zone.

3) Eliminate Outliers in L2 to L3 Processing: Although
implementing the land correction delivers more L2 SSS
retrieval closer to land, we cannot ignore the fact that some
of those retrieved are very noisy. A procedure to eliminate
extreme outliers in L2 to L3 processing without sacrificing
SMAP’s intrinsic resolution is needed, which is critical for
resolving features in coastal processes such as upwelling
plums or fronts.

V. CONCLUSION

Using saildrone salinity measurements along the west coast of
North America, we conclude that in the coastal area 40 km away
from land, the uncertainty of SMAP Level 3 SSS is 0.51 psu for
JPL_L3 and 0.56 for RSS70 km_L3. This is encouraging for
the potential application of SMAP SSS in this coastal zone (40–
100 km) particularly in monitoring processes associated with
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large freshwater variance (exceeding 0.5 psu), for example, river
plumes, ocean fronts and coastal upwelling. Within 40 km, the
uncertainty increases to 1.03 psu for JPL_L3 and 0.67 psu for
RSS70km_L3. While JPL_L3 data covers all the way to the
coast, there is a data gap more than 30 km wide in RSS70km_L3.

The discrepancy between JPL and RSS products is resulted
from the different approaches to mitigate the land contamination.
JPL’s land correction algorithm works well in coastal area 40 km
away from land where the land fraction within the footprint is
generally small. On the other hand, RSS’s side lobe correction
breaks down whenever satellite footprint touches land; which not
only creates a data gap within 40 km to land, but also severely
over-correct at distance 50 to 80 km from land.

We believe that JPL’s land correction method is promising
in pushing SMAP SSS retrieval towards land. For future im-
provement, we suggest to implement dynamic land correction
versus the current climatology-based static land correction to
reduce uncertainty in estimation land contribution. For L2 to L3
processing, our goal is to maintain as much as possible the instru-
ment intrinsic resolution, which is important to resolving coastal
processes, such as fronts or upwelling plums. A procedure with
more rigorous quality control in conjunction with median filter-
ing may help to eliminate outliers without over-smoothing. This
article lay the groundwork for future improvements of SMAP
derived salinity in the critical coastal regions that are linked to
societal benefits.
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