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Krill are a direct conduit between primary productivity and recreationally and

commercially important higher trophic level species globally. Determining how

krill abundance varies with temporal environmental variation is key to

understanding their function in coastal-pelagic food webs, as well as

applications in fisheries management. We used nine years (2012–19 and 2021)

of late spring/early summer hydroacoustic-trawl survey data in the California

Current Ecosystem (CCE), coupled with new target strength models of two krill

species (Euphausia pacifica and Thysanoessa spinifera), to investigate how adult

krill biomass varied during a decade of unusual ocean climate variability. We

estimate a mean biomass of 1.75–2.0 million metric tons on the central and

northern California continental shelf. Overall, relative krill biomass was ~30%

lower during 2015 and 2016, corresponding to a major warming event, and ~30%

higher in 2013 and 2018, years of exceptionally strong upwelling. Variation in

biomass was related to the prior year’s environmental conditions derived from

our seasonal Multivariate Ocean Climate Index (MOCI), and E. pacifica and T.

spinifera showed similar covariation during the study period. Biomass co-varied

at different spatial scales and across sampling devices, suggesting that multiple

indicators of abundance (and dispersion) are available and should be applied in

ecosystem monitoring and modeling of krill and krill-dependent predators in the

California Current ecosystem.
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1 Introduction

The distribution, abundance, and availability of euphausiid

crustaceans, hereafter “krill”, is fundamental to marine predator-

prey interactions across the globe (Field et al., 2006; Aydin and

Mueter, 2007; Szoboszlai et al., 2015; Trathan and Hill, 2016; Cavan

et al., 2019). Despite the importance of krill to predatory fish,

seabirds, and marine mammals, the effects of environmental

variability on the regional abundance of most krill species has yet

to be determined. Exceptions to this statement include well-studied

populations of Euphausia superba in the Southern Ocean (Brierley

et al., 1997; Nicol et al., 2000; Reiss et al., 2008; Atkinson et al., 2009)

and Thysanoessa spp. in the Bering Sea (Coyle and Pinchuk, 2002;

Ressler et al., 2012) and Barents Sea (Eriksen and Dalpadado, 2011).

The California Current Ecosystem (CCE; ~48°N to 22°N latitude)

is a highly productive, yet variable spatially-heterogeneous eastern

boundary upwelling system off the west coast of North America

(Checkley and Barth, 2009). There is long-held understanding of

basic krill species distribution and abundance here (e.g., Brinton,

1962; Brinton and Townsend, 2003) with large basin-scale

atmospheric forcing (e.g., Pacific Decadal Oscillation and El Niño

Southern Oscillation) impacting regional krill species abundance

through advection and changes in in-situ habitat conditions

(Marinovic et al., 2002; Brinton and Townsend, 2003; Parés-

Escobar et al., 2018; Lilly and Ohman, 2021). In the strongest

regions of upwelling in the CCE (northern California, Oregon),

seasonal upwelling dynamics also impact regional distribution and

abundance through changes in transport (Dorman et al., 2005;

Dorman et al., 2015) and primary productivity (Feinberg et al.,

2010; Shaw et al., 2010). Recent modeling efforts also provide better

insight into oceanographic drivers of krill populations (Dorman et al.,

2011; Cimino et al., 2020; Fiechter et al., 2020; Messié et al., 2022).

At least 24 species of krill are known to be “routinely” present in

the California Current ecosystem, with many others irregularly

observed, and all of them have complex and varying life histories

and responses to environmental forcing (Brinton, 1962; Marinovic

et al., 2002; Lilly and Ohman, 2021). Of these, Euphausia pacifica and

Thysanoessa spinifera are the two numerically dominant krill species

of importance to predators in the CCE (e.g., Abraham and Sydeman,

2006; Dufault et al., 2009; Szoboszlai et al., 2015; Nickels et al., 2019).

T. spinifera is the more neritic species, occurring primarily over the

continental shelf, whereas E. pacifica is most abundant offshore along

the continental shelf break and slope (Brinton, 1962; Dorman et al.,

2005; Santora et al., 2012). T. spinifera is the larger species (adults up

to ~32 mm), contains greater lipid content (Fisher et al., 2020), and is

a preferred prey item of predators at certain places and times

throughout each year (Abraham and Sydeman, 2006; Wells et al.,

2012; Nickels et al., 2019). In contrast, smaller E. pacifica (adults up to

~25 mm) is more abundant and widely distributed (Brinton, 1967;

Brinton and Townsend, 2003). Consequently, most studies indicate

that E. pacifica and T. spinifera are by far the most numerically

abundant and most important species with respect to trophic

interactions in this region as well as other regions of the California

Current (e.g., Croll et al., 2005; Abraham and Sydeman, 2006;

Sakuma et al., 2016; Evans et al., 2021).
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Modeled estimates of select species of krill abundance at the

ecosystem scale are available from mass-balance models such as

ECOPATH and ECOSIM (Christensen and Pauly, 1992;

Christensen and Walters, 2004) and Atlantis (Weijerman et al.,

2016), but these estimates are typically based on “top-down”

estimates of predator consumption needs rather than empirical

estimates of actual abundance, and the dynamic models rarely

account for the “bottom-up” ecosystem dynamics that are more

likely to result in year-to-year changes in abundance. Improved

understanding of krill abundance relative to environmental

variation is needed to model the effects of food resource

availability on predator demography and managed commercial

and recreational fisheries. Regional-scale catch per unit effort of

krill has been empirically evaluated in relation to seasonal

variability in ocean climate (Sydeman et al., 2013; Santora et al.,

2014; Ralston et al., 2015), but no study of biomass has been

conducted at the ecosystem scale to date.

The objective of this study is to investigate how the abundance

of T. spinifera and E. pacifica adults (generally ≥12 mm length)

varies interannually over a 10-year period of substantial

environmental variation, 2012 through 2021 (no acoustic data

were collected in 2020). We focus on the region from Cape

Mendocino (40°N) to Pt. Conception (35°N), California

(Figure 1), where coastal upwelling is strongest (Checkley and

Barth, 2009), and where our acoustic-trawl survey effort was

concentrated (Santora et al., 2011a, Santora et al., 2018). To

estimate adult krill biomass, we applied a target strength model to

hydroacoustic data (Warren and Lucca, 2020; Warren et al. in

prep), and length-frequency measurements from concurrent trawls

(Killeen et al., 2022). This study was conducted during a period

characterized by extreme oceanographic conditions, including

record coastal upwelling in 2013 (Leising et al., 2014) and 2018

(Thompson et al., 2018; Thompson et al., 2019), and an

unprecedented marine heat wave in 2014–15 (Bond et al., 2015),

followed by strong El Niño Southern Oscillation (ENSO) conditions

in 2016 (Di Lorenzo and Mantua, 2016). Here we compare krill

biomass estimates to the Multivariate Ocean Climate Index (MOCI;

www.faralloninstitute.org/moci; Sydeman et al., 2014; Garcıá-Reyes

and Sydeman, 2017) to test the hypothesis that krill biomass

declines/increases during periods of weak/strong upwelling and

warm/cool temperatures, and to determine the environmental

effects on krill biomass.
2 Materials and methods

2.1 Survey background

Acoustic and trawl data were collected as part of the NOAA-

NMFS Rockfish Recruitment and Ecosystem Assessment Survey

(RREAS; Sakuma et al., 2016). The RREAS is an annual survey of

continental shelf and slope habitat off California that typically

occurs over ~45 days from late April to mid-June each year. A

complete map of all trawl stations from the RREAS is shown in

Figure 2 of Sakuma et al. (2016). Herein, we synthesize data from
frontiersin.org
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the survey area from Cape Mendocino to Pt. Conception (40.4 to

34.4°N latitude) and to 60 km offshore, hereafter referred to as the

“study area” (Figure 1). The survey area from Pt. Reyes to the

southern end of Monterey Bay, hereafter called the “core region”,

receives the greatest focus in our results, as it is the most heavily

sampled region.
2.2 Net data collection and processing

Krill were collected as part of micronekton sampling on the

RREAS using a modified Cobb mid-water trawl with a 26-m

headrope, 9.5-mm stretched mesh cod-end liner, and an optimal

mouth opening of 12 m by 12 m (Sakuma et al., 2016). All trawls

were done at night, for ~45 minutes duration, and with a target

head-rope depth of 30 m. The trawl does not sample small krill well

(<12 mm), and also likely under-samples krill 12 to 16 mm in length

(Wells et al., 2012). However, the trawl samples krill >16 mm well

(Cimino et al., 2020; Killeen et al., 2022) and may be better at

sampling adult size classes than smaller nets (Weibe et al., 2004).

Trawl nets were deployed on a regular grid as part of the larger

RREAS and were not deployed specifically to sample acoustic

signatures. A subsample of the total krill collected in the trawl

was preserved in 10% buffered formalin and later analyzed to

determine the species composition, abundance, and length-

frequency of the dominant krill species in the haul. The size of

the subsample (typically 200 ml, but larger when fewer krill were

present) was chosen to ensure representative length frequencies of

the top two to three krill species sampled by the net.
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We used krill samples from mid-water trawls to model species

distribution relative to bathymetry (all stations, years 2002–2018),

characterize the adult population size structure (select stations,

years 2012–13 and 2015–18; see Killeen et al., 2022), and

calculate a krill abundance index (core stations, years 2012–2021).

2.2.1 Partitioning acoustic signal to
species distribution

Three regional “climatologies” of relative abundance of E.

pacifica and T. spinifera in relation to bottom depth were created

using community composition data from all RREAS stations from

2002–2018 (Figure 2). Generalized additive modeling (GAM)

using the R (version 4.0.0) package ‘mgcv’ (Wood, 2011, version

1.8-31, R Core Team, 2020) was used to account for non-linear

relationships between log-transformed E. pacifica and T. spinifera

trawl catch-per-unit effort and bathymetric depth. GAM models

for each species were fit with a quasi-Poisson distribution and log-

link function, and evaluated using regional cross-validations

(Table S1). Regional model results were used to determine the

proportion of the backscatter attributable to each species based on

the bottom depth where the acoustic data were obtained.

2.2.2 Characterizing the adult population
size structure

Length-frequencies of krill (Figure 3) were derived from

formaldehyde-preserved sub-samples from select stations of the

RREAS mid-water trawls (years 2012–2018). Data were not

available from all RREAS trawl stations, but those analyzed

spanned the latitudinal and onshore/offshore extent of the RREAS
FIGURE 1

Acoustic sampling effort (nautical miles surveyed per grid cell) on the 2012–2021 RREAS between Cape Mendocino and Pt. Conception (A) by
latitude, and (B) spatially explicit. Horizontal dashed lines delineate the core region defined in the text. Gray shading (in B) represents the spatial
extent of the grid (~60 km offshore) used to calculate biomass for the region. Adjacent stars and circles (in A) identify latitudinal transect lines and
how they were grouped for analysis. Grid cells with a red marker (in B) exceed the maximum number of nautical miles set by the color scale. The
maximum number of nautical miles sampled in any grid cell was 88.5 nmi.
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(Killeen et al., 2022). Krill were identified to species and sex and

measured using the segmented line tool in ImageJ software

(Schneider et al., 2012; Rueden et al., 2017). The station size

distributions were expanded using the total krill catch from the

station and annual size distributions were used to create weighting

arrays (Wl) for each species (Equation 1) where nl is the number of

krill sampled at each length (l), ranging from 12 mm to 35 mm in 1

mm increments. A climatology was created from the years 2012–13

and 2015–18 and applied to years with no length-frequency data

(2014, 2019, 2021).

Equation 1

Wl =
nl

ol=35
l=12nl

The length-frequency data were derived from nighttime

samples and our acoustic sampling was conducted during

daytime (see below). We assume that we sampled the same
Frontiers in Marine Science 04
population with the nets and acoustics as adult krill are reliable

vertical migrators and do not migrate deeper than our deepest

sampling depth (400 m) (Brinton, 1967; Youngbluth, 1976).

2.2.3 Krill abundance index
A relative abundance index for krill from net sampling using a

delta-generalized linear model was developed and derived from

Santora et al. (2021), based on the approach long used for

developing groundfish recruitment indices to inform stock

assessments (Ralston et al., 2013). This approach accounts for

spatial and temporal sampling covariates and models presence/

absence, and then abundance where present (Maunder and Punt,

2004; Ralston et al., 2013). Candidate models using varying error

distributions were evaluated using the Akaike Information

Criterion (AIC), and uncertainty was measured by running the

model in a Bayesian framework with vague priors and computing

95% credible intervals using the package 'rstanarm' in R (Santora

et al., 2021). The resulting indices, a measure of relative abundance,

were log(x+1) transformed for comparative purposes with acoustic

indices. Abundance indices from a suite of forage taxa estimated in

this manner are reported in a collection of “ecosystem status”

documents that inform fisheries managers throughout the

California Current (e.g., Harvey et al., 2021; Weber et al., 2021).
2.3 Acoustic data collection
and processing

Acoustic survey effort over 2012–2021 is shown in Figure 1.

Acoustic survey data were collected using a Simrad EK60 (2012–

2018) and a Simrad EK80 (2019–2021). The echo sounders were

calibrated annually in the spring by NOAA-Southwest Fisheries

Science Center before the RREAS (Stierhoff et al., 2020) and data

were typically collected using a ping interval of 1 second. Data were

processed using Echoview 4.9 and 12.0 (Echoview Software Pty Ltd,

Hobart, Australia). Data were excluded from a) waterline to 10 m

depth due to transducer depth and shipboard interference from

downswept air bubbles, b) within 5 m of the bottom to avoid signal

interference, and c) below 400 m in deeper waters. Visual

examination of the data was conducted and data showing

evidence of false bottoms, surface perturbations, obvious

anomalies, and bad pings were excluded. Data collected at ship

speeds below 5 nautical miles hr-1 were not processed in order to

avoid periods of equipment interference and ensure unbiased

comparison of the data with concurrent seabird and marine

mammal surveys. Only daytime acoustic data (collected 30

minutes post-sunrise to 30 minutes prior to sunset) were included

in biomass analyses because of a strong negative bias in the

nighttime data due to krill migrating into surface waters above

our 10-m surface depth cutoff.

Acoustic backscatter was classified as krill when the difference

in volume backscatter between the 38 and 120 kHz systems, DSV120-
38, fell within the range of previously reported values for krill (DSV
120-38 range = 10.9–16.7; De Robertis et al., 2010). This DSV range

was derived from krill 16–30 mm in length, similar to the lengths of

adult E. pacifica (12–25 mm) and T. spinifera (14–32 mm) in our
A

B

C

FIGURE 2

Generalized additive models (GAMs; derived using species-specific
trawl catch per unit effort data) that were used to partition the
acoustic signal into Euphausia pacifica (red) and Thysanoessa
spinifera (blue) by depth: north of the core region (A), within the
core region (B), and south of the core region (C).
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region of study, and it has little to no overlap with measured DSV120-
38 ranges for other species including jellies, myctophids, and other

small forage fish. However, as noted by De Robertis et al. (2010),

this process may not exclude scattering from other organisms such

as non-euphausiid crustaceans, gelatinous zooplankton, small

myctophids (which lack swim bladders) or other epipelagic
Frontiers in Marine Science 05
micronekton. Backscatter that satisfied the DSV120-38 criteria for

krill were used as a mask on the 120 kHz data, which were used for

biomass estimates.

Volume backscattering (SV) was averaged into 0.25-nmi

(horizontal) and 10-m (vertical) bins (De Robertis et al., 2010).

To determine background noise, SV at all frequencies was averaged
A

B

D

E

F

G

C

FIGURE 3

Euphausia pacifica (red) and Thysanoessa spinifera (blue) population size structure from 2012–13 (A, B), 2015–18 (C–F), and a combined climatology
(G). Frequency is the percentage of total measured species at each length increment (mm).
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over 40 pings (horizontal) and in 10-m depth increments, and the

minimum value was selected as background noise (De Robertis and

Higginbottom, 2007). Data were excluded from analysis if Sv (with

noise removed) was not 10 dB greater than that of the

background noise.
2.4 Target strength modeling

Target strength modeling was done using the stochastic

distorted-wave Born approximation (SDWBA) (Demer and

Conti, 2003; Conti and Demer, 2006). Input parameters used in

the target strength model were derived from measurements of krill

morphology, density, and sound speed contrast from 160 individual

krill (110 E. pacifica and 50 T. spinifera) collected and measured

during the 2019 RREAS (Warren and Lucca, 2020). Morphology

and density contrast were measured for individuals (i.e., species-

specific results) whereas sound speed contrast measurements were

made on groups of animals (same value for both species) due to

methodological limitations (Becker and Warren, 2014; Lucca et al.,

2021). The measured parameter values (Table 1) were similar in

range to measurements from previous studies of euphausiids in the

Northeast Pacific (Becker andWarren, 2014) and Bering Sea (Smith

et al., 2010). It should be noted that the values used in this study are

different than the traditional density and sound speed contrast

values from Antarctic krill (i.e., Foote et al., 1990) that are

commonly used for euphausiid target strength predictions.

Mean backscattering strength of E. pacifica and T. spinifera was

calculated for animals with lengths 12–35 mm in 1-mm increments.

For each animal length, 1000 iterations of the model were run using

normal distributions of density and sound speed contrast. Other

parameters that were varied for each model iteration included

animal shape (i.e., fatness as a function of animal length) based

on species-specific shape measurements made during the cruise,

and animal orientation with data from a previous study (Lucca

et al., 2021). The modeled target strength values were then averaged

(in the linear domain) to produce a mean backscattering cross-

section value for each species and length increment (sBSl) that was
then used for the biomass calculations.
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2.5 Biomass calculations

Abundance, expressed as biomass, was estimated for E. pacifica

and T. spinifera separately and together. The acoustic signal

(volume backscattering – sv) was partitioned by species based on

a set of regional GAMs modeling species distribution with water

depth (Figure 2). Because the computation process is the same for

both species, the following equations do not include denotations of

species (except in Equations 5 and 6). In all equations, capital letters

are used to denote arrays and lower case letters denote scalars.

Average backscattering strength of the acoustically sampled krill

( sbs) was calculated for each region using Equation 2.

Equation 2

sbs =ol=35
l=10sBSl �Wl

Total number of krill per species per m2 (nk) was calculated as in

Equation 3, and number of krill (NKl) at each length increment was

calculated as in Equation 4.
Equation 3

nk =
sv
sbs

Equation 4

NKl = nk�Wl

Arrays of the wet weight (WW, units: mg) of E. pacifica and T.

spinifera were calculated for 1-mm length (l) increments from 12 to

35 mm using Equations 5 and 6, respectively. These equations are

based on a linear regression of length and weight measurements of

frozen animals collected during the 2019 RREAS (see Figure 8 in

Warren and Lucca, 2020) and measured in a laboratory post-cruise

(E. pacifica: N = 88, R2 = 0.74; T. spinifera: N = 44, R2 = 0.81).

Equation 5

E : pacifica  WWl = 10−1:5 � l2:56

Equation 6

T : spinifera  WWl = 10−2:7 � l3:67

Finally, total species biomass (bm, units: mg m-2) was calculated as

Equation 7.

Equation 7

bm =o35
l=10NKl �WWl

Total kril l biomass is the sum of E. pacifica and T.

spinifera biomass.
2.6 Acoustic indicators of regional biomass

By averaging acoustic observations on a grid of 2,657 discrete 25-

km2 cells, we developed three indicators of krill biomass: i) arithmetic

mean, ii) median, and iii) geometric mean (Figure 1). This grid cell

size was chosen to reduce autocorrelation between cells (Santora

et al., 2011a), and to reflect a reasonable trade-off between sampling

density and spatial resolution (Santora et al., 2011b). In this paper, we
TABLE 1 Summary of SDWBA model inputs for each krill species with
distributions (Gaussian, mean value ± standard deviation) reported
where appropriate.

Parameters Euphausia pacifica Thysanoessa spinifera

Shape Species-specific Species-specific

Length (SL2) Normal (14.3, 3.4) Normal (18.8, 2.9)

g Normal (1.0299, 0.0082) Normal (1.0261, 0.0078)

h Normal (1.0233, 0.0086) Normal (1.0233, 0.0086)

j 0.2 0.2
Density (g) and sound speed (h) contrast, animal length (mm, Standard Length 2, Lawson
et al., 2006), and shape (Lucca et al., 2021) were varied for each model iteration. Shape, size,
and density contrast data are from 110 E. pacifica and 50 T. spinifera. All model runs had a
model stochasticity (or phase variability) (j) of 0.2 (Conti and Demer, 2006).
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focus on the results derived from the arithmetic means due to the

patchiness and aggregating nature of krill (see Discussion). Data

coverage, the percentage of discrete grid cells sampled in at least one

year within the study area, was 80.9%. The number of grid cells

sampled in at least four of the nine years was 27.2%. The number of

grid cells sampled in at least one year within the core region was

91.7%, and the number sampled in at least four years was 54.1%.
2.6.1 Scale-up method
We used multiple methodologies to fill grid cells that were

without data. These multiple statistics and methods are presented to

explore the range of outcomes in our estimates. To account for grid

cells without data, the total regional biomass (bmreg) was calculated

as the summed biomass across all grid cells (bmi) that contained

data (ndata), converted to metric tons per grid cell (mt), and then

scaled up to the entire region by dividing by the % coverage of data

(Equation 8). We used this method first over all grid cells with data

from the nine years, and then for only those grid cells that had at

least four years of data.

Equation 8

bmreg = (ondata
i=1 bmi �

25, 000, 000(m2)
1, 000, 000, 000( mg

MT )
) ÷

ndata
ntotal
2.6.2 Cross-shelf transect method
Mean biomass was also estimated using only data collected on

cross-shelf transect lines that were consistently sampled. Cells

between the adjacent lines were filled in using nearest neighbor

interpolation (similar to methods in Ressler et al., 2012). Transect

lines were identified by calculating the number of samples collected

in small latitudinal bins (~1 km; Figure 1). Each transect line had

varying degrees of sampling effort as they were not sampled in every

year during daytime hours. Our preliminary analysis of transects

used all identified lines (northern region n = 9, core region n = 8,

southern region n = 9). A second similar analysis combined data

from adjacent individual transects into eight groups based on

proximity to one another (see Figure 1A).

2.6.3 Annual biomass
Annual acoustic estimates were assessed for the study area and

the core region using only the scale-up method (Equation 8)

because there was not enough data collected on the individual or

the grouped transect lines on a year-to-year basis. Annual biomass

estimates were also calculated along the four transect lines that had

the most data collected on them over the nine years of the study (at

36.9°N, 37.2°N, 37.4°N, and 38.3°N; Figure 1) using the scale-up

method (Equation 8; using only the discrete grid cells along the

transect line). The annual gridded krill biomass was not normally

distributed (Kolgomorov-Smirnov test, D = 0.29, p< 0.01) due to the

presence of high-density aggregations. Thus, we used the non-

parametric Kruskal-Wallis test to determine the significance of

interannual variation in krill biomass.
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2.6.4 Uncertainty analysis
We estimated uncertainty in biomass (due to fine-scale spatial

variability within our grid cells) by running Monte-Carlo

simulations (10,000 total) on the mean and standard deviation of

biomass for each grid cell. Uncertainty due to variability in the

parameters of the target strength model was assessed by calculating

acoustic biomass using the average target strength ±1 standard

deviation of sbs. We also examined how variability in length-

frequency of krill impacted biomass by comparing results

calculated using an annual length-frequency to those calculated

using a climatology derived from all years of data.
2.7 Krill biomass relative to
environmental variation

We evaluated six measurements of krill biomass for relationships

with environmental variation: total krill, E. pacifica, and T. spinifera

biomass in the full study area, and total krill, E. pacifica, and T.

spinifera biomass in the core study area (Figure 1). We used the

Central California (34.5°N–38°N) MOCI to represent environmental

conditions across years. MOCI is a seasonal index (Jan–Mar, Apr–

Jun, Jul–Sep, and Oct–Dec) that integrates nine variables, including

Pacific basin-scale drivers (Pacific Decadal Oscillation (PDO), ENSO)

and local phenomena such as upwelling, sea surface temperature, and

winds. MOCI is negative during years of cooler temperatures and

stronger upwelling and positive during years of warmer temperatures

and decreased upwelling. For each krill biomass variable, we

examined the potential effects of winter and spring MOCI in the

same year (yearx) and the four seasons from the previous year (yearx-

1). Lagged relationships were examined because stanzas of warm and

cool years and krill abundance have been observed (Brinton and

Townsend, 2003; Santora et al., 2014), and a variety of studies have

shown that winter “pre-conditioning” of the ecosystem may be a

driver of population change of krill and productivity of krill predators

(Black et al., 2011; Schroeder et al., 2014). To select the best model, we

used forward stepwise regressions to examine relationships; MOCI

variables were added sequentially at p-value < 0.1 starting with the

one that was most highly related to krill biomass. Additional variables

were added sequentially if they were significantly related to krill

biomass after the inclusion of variables entered earlier in the

stepwise process.
3 Results

3.1 Mean regional biomass (2012–2021)

Krill biomass for California ranged from 1,715 to 1,974

thousand metric tons (kmt) (Table 2; Figure 4). The 95%

confidence intervals of the results using the scale-up method

were ±204 mt when using all data, and ±443 mt when using only

those grid cells with four or more years of data.
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Krill biomass for the core sampling region ranged from 534 to

629 kmt (Table 2). The 95% confidence intervals of the results using

the scale-up method were ±131 mt when using all data and ±184 mt

when using only those grid cells with four or more years of data.

Biomass estimates derived from the median and geometric

mean are presented in supplemental material (Table S2). These

indices of abundance were different from arithmetic mean

abundance, but for reasons detailed below (Discussion) we focus

on the results of arithmetic means.
3.2 Interannual variation in biomass

Biomass ranged from a low of 1,162 kmt in 2016 to a high of 2,494

kmt in 2018 (Table 3), with 95% confidence intervals of ±9.4% and

±33.9%. Overall, E. pacifica was slightly more abundant each year

(≥50.8% of the biomass), except in 2012 when T. spinifera was more

abundant (56.4% of the biomass; Table 3). However, within the core

region, T. spinifera was consistently more abundant (≥54.5%; Table 4).

In this region, interannual variation in biomass ranged from 367 kmt in

2016 to 851 kmt in 2018 (Table 4; Figure S1), with 95% confidence

intervals of ±15.5% to ±73.9%, respectively. Estimated annual total krill

biomass was significantly lower in 2015–2016 than in other years (H =

192.2, p< 0.0001; Table 4; Figure S1).

Interannual variation in acoustically-derived biomass in the

core region was positively, but not significantly, related to krill

relative abundance from net samples (R2 = 0.20, p = 0.23, n = 9;

Figure 5). Prior to 2019, the relationship between the acoustic and

net samples was even stronger (R2 = 0.65, p< 0.05, n = 7).
3.3 Relationship between krill biomass and
ocean climate

Five of the six krill biomass variables were related to seasonal

MOCI in a negative fashion, i.e., krill biomass decreased with

increasing values of MOCI (Table 5). T. spinifera and total krill

biomass in the full study area were correlated with summer MOCI

in the previous year, while all three biomass variables from the core

region were predicted by spring MOCI in the previous year

(Table 5). In each of these relationships, 2018 appears to be a

potential outlier (Figure 6). Models explained 39% to 76% of the

variation in krill biomass between years.
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4 Discussion

Our study quantified long-term interannual variability of krill

species biomass through an integration of acoustic and mid-water

trawl surveys, species distribution modeling, and assessment of ocean-

climate variability. There are several important conclusions informed

by our study, most of which support previous research on variability of

krill abundance within the central California Current. First, we

estimated krill biomass during a decade of substantial environmental

variability. Observations were collected during years of both weak and

strong upwelling and notable warming events, suggesting they

represent what may be considered the range of interannual variation

in krill species biomass in this region. We estimate the average adult

krill biomass in the study area and core region to be 1,750 to 2,000 kmt

(26.3–30.1 mt km-2) and 550 to 650 kmt (31.0–36.0 mt km-2),

respectively. Second, we found that ocean-climate conditions,

inferred by a multivariate indicator, relate to krill biomass at the time

of sampling and the year prior, highlighting that krill populations

respond to several years of cooler ocean temperatures and upwelling

conditions. Although this supports previous research (Santora et al.,

2014; Cimino et al., 2020; Fiechter et al., 2020), this finding is important

because multivariate indicators may better integrate scales of space-

time variability than univariate comparisons alone, and benefit

communicating potential changes in krill biomass a year ahead to

improve timeliness of ecosystem assessments. However, on the use of

multivariate indicators, we acknowledge that this approach does not

infer actual mechanisms that govern interannual variation in krill

biomass, but does provide a novel approach for developing integrated

ecosystem monitoring. Third, our krill species biomass estimates have

implications for ecosystem modeling and advancing survey

methodologies. We discuss each of these points in subsequent

sections below and provide recommendations and address potential

uncertainties needing to be resolved with future research.
4.1 Interannual variation in biomass

Annual adult krill biomass estimates for the region varied

widely over the 10-year period with the greatest/least biomass

values ~600 kmt above/below the 2012–2021 average (±~30%).

The core region exhibited similar variability (±~200 kmt, 30% of the

mean value). The two years of lowest krill biomass, 2015 and 2016,

coincided with a period of intense warming in the North Pacific
TABLE 2 2012–2021 Mean krill biomass (thousands of metric tons (kmt); bold), standard deviation (SD, kmt), coefficient of variation (CV), and percent
data coverage of the region.

Entire Region Core Region

Method Parameters Mean, 1 SD, CV Data Coverage Mean, 1 SD, CV Data Coverage

Scale-Up All Data 1,837, 104, 5.6% 80.9% 552, 67, 12.1% 91.7%

Scale-Up 4+ Years Data 1,974, 226, 11.5% 27.2% 602, 94, 15.6% 54.1%

Individ. Line 26 Lines 1,715 534

Group Line 8 Lines 1,832 629
Calculated using length frequencies of krill that were collected concurrently with acoustics when available and using a climatological length frequency when not (2014, 2019, 2021).
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from mid 2014 through 2016 (Bond et al., 2015; Gentemann et al.,

2017). Warm water temperatures persisted in the nearshore

environment throughout most of 2015 and into 2016 as strong El

Niño conditions developed during this period (Di Lorenzo and

Mantua, 2016). Reduced productivity in the California Current

coastal ecosystem is generally associated with warm ocean

conditions, particularly El Niño events (Lenarz et al., 1995;

Marinovic et al., 2002). As a consequence, decreased krill biomass

is expected given ecosystem dynamics during this warm water

period (see also Brinton and Townsend, 2003; Santora et al.,

2020). A similar marine heatwave occurred in summer 2019, but

after the RREAS sampling had concluded. In contrast, we also note

the high krill biomass in 2013 and 2018. Record-breaking upwelling

intensity in April–June 2013 (Thompson et al., 2019) promoted

increased productivity in the system that is reflected in the high krill
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biomass that year. Indicators of ecosystem productivity (e.g.,

MOCI) also suggested highly favorable conditions for biological

productivity in 2013 and 2018. Acoustic surveys of krill over a

similar set of years (from later in the summer) also found 2013 to be

a year of high krill abundance and 2015 to be a year of very low

abundance (Phillips et al., 2022).

Despite the interannual variability in adult krill biomass, the

percentage of krill that our models partitioned to E. pacifica and T.

spinifera remained remarkably consistent over the study period.

Because our species partitioning model is a function of depth, this

reflects the consistency of the cross-shelf location of the acoustic

signal between years. Our results are also consistent with previous

studies that found the most krill biomass along the shelf break and

near submarine canyons (Santora et al., 2011a; Santora et al., 2018).

Future species partitioning schemes could incorporate more factors
A

B C

FIGURE 4

Mean biomass density (kg m-2) in the study area, 2012–2021, of (A) total krill, (B) Euphausia pacifica, and (C) Thysanoessa spinifera (note the varying
difference in scales). Grid cells with a red marker exceed the maximum biomass set by the color scale. Maximum biomass density was (A) 0.60 kg
m-2 of total krill, (B) 0.51 kg m-2 of E pacifica, and (C) and 0.22 kg m-2 of T. spinifera.
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beyond depth, and may provide more variability in species

composition (Cimino et al., 2020). Certainly, better species-

specific biomass information is important as E. pacifica is

ubiquitous in the North Pacific and supports many predators,

while the larger T. spinifera is more limited in range but is more

energetically valuable (Fisher et al., 2020), and is a preferred prey for

some specialist predators including seabirds (Abraham and

Sydeman, 2006) and cetaceans (Nickels et al., 2019).

Annual variation in acoustic krill biomass in relation to the

previous year’s environmental conditions, as measured by MOCI,

could reflect the impact of prior year conditions on fecundity,

recruitment, and ultimately survival to the next year. Krill

reproduction happens throughout most of the year (Feinberg and

Peterson, 2003; Feinberg et al., 2010), but there is a seasonal peak in

reproduction during the period of strongest upwelling each year

(Feinberg et al., 2010). The more neritic species, T. spinifera, is

thought to be more responsive to the timing and intensity of

upwelling than E. pacifica (Schroeder et al., 2014), and in this

regard it is of note that the correlations with MOCI were marginally
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stronger with T. spinifera than E. pacifica. The density of eggs in the

water also is positively related to chlorophyll a (Feinberg et al.,

2010), thus a more productive upwelling season likely leads to more

eggs and larvae produced. Development time from egg to juvenile is

approximately 2 months (Ross, 1981; Feinberg et al., 2006), and to a

reproductive adult is 5–8 months, though this is temperature

dependent (Ross, 1982). Thus, the adult krill that are sampled

during our surveys in May/June each year are undoubtedly spawned

in the previous year.

We note, however, that more eggs in the water does not necessarily

translate to greater number of surviving adults in the next year, but

favorable environmental conditions in the seasons following spawning

can lead to larger krill (Robertson and Bjorkstedt, 2020). Krill also have

the ability to shrink in response to poor food conditions (Marinovic

and Mangel, 1999; Shaw et al., 2010; Shaw et al., 2021), thus conveying

a survival advantage to larger krill as they can withstand poor food

conditions for longer periods of time. Other factors such as predation

and transport could also influence survival and local abundance, but

are beyond the scope of this study.
TABLE 4 Annual krill biomass (thousands of metric tons (kmt); bold), standard deviation (SD, kmt), coefficient of variation (CV), percent data coverage,
and percent biomass of each species from the core region.

Year Mean, 1 SD, CV Data Coverage %E. pacifica %T. spinifera

2012 679, 92, 13.5% 53.1% 39.7% 60.3%

2013 725, 62, 8.6% 42.5% 44.4% 55.6%

2014 703, 67, 9.6% 43.9% 44.8% 55.2%

2015 394, 54, 13.7% 47.7% 45.5% 54.5%

2016 367, 105, 28.6% 44.7% 44.0% 56.0%

2017 495, 86, 17.4% 39.3% 44.2% 55.8%

2018 851, 80, 9.3% 46.1% 44.3% 55.7%

2019 620, 49, 8.0% 43.7% 42.1% 57.9%

2021 469, 177, 37.7% 27.0% 42.3% 57.7%
Biomass was calculated using the scale-up method.
TABLE 3 Annual krill biomass (thousands of metric tons (kmt); bold), standard deviation (SD, kmt), coefficient of variation (CV), percent data coverage,
and percent biomass of each species from the entire region.

Year Mean, 1 SD, CV Data Coverage %E. pacifica %T. spinifera

2012 1,798, 208, 11.5% 23.9% 43.6% 56.4%

2013 2,437, 154, 6.3% 24.7% 53.5% 46.5%

2014 2,148, 147, 6.9% 31.6% 51.5% 48.5%

2015 1,376, 199, 7.2% 33.6% 52.6% 47.4%

2016 1,162, 201, 17.3% 30.2% 50.8% 49.2%

2017 1,918, 158, 8.2% 25.9% 51.5% 48.5%

2018 2,494, 120, 4.8% 34.9% 56.5% 43.5%

2019 2,059, 109, 5.3% 25.5% 51.6% 48.4%

2021 2,418, 367, 15.2% 16.6% 63.4% 36.6%
Biomass was calculated using the scale-up method.
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Last, the lagged correlations between krill biomass and

environmental variation corroborates a recent previous study showing

relationships between water temperature, krill abundance, and the

timing of blue whale arrival in the Southern California Bight

(Szesciorka et al., 2020). In that study, cooler waters, presumably

reflecting upwelling and primary production in a previous year, also

led to higher krill biomass and earlier whale arrival time off

Southern California.
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4.2 Implications for ecosystem modeling

Our estimates of adult krill biomass are generally higher than

estimates developed from mass-balance ecosystem models and

those from more localized studies using net samples (Table 6).

This is perhaps due to the finer-scale sampling provided by acoustic

surveys and the ability to consistently sample small-scale dense

swarms of krill. More than 50% of the acoustic biomass we
A

B

FIGURE 5

(A) Time series of acoustic biomass of krill (•) and a krill abundance index (♦) determined from trawl nets in the core area, and (B) regression of
same data.
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TABLE 5 Results of forward stepwise regression of krill biomass in the full and core regions predicted by seasonal MOCI.

Species Area Predictor Coefficient p-value Model R2

Krill Biomass Entire Region Summer MOCI, yearx-1 -68.2177 0.028 0.52

E. pacifica biomass Entire Region None

T. spinifera biomass Entire Region Summer MOCI, yearx-1 -33.7693 0.002 0.76

Krill biomass Core Region Spring MOCI, yearx-1 -37.5863 0.055 0.43

E. pacifica biomass Core Region Spring MOCI, yearx-1 -15.6063 0.074 0.39

T. spinifera biomass Core Region Spring MOCI, yearx-1 -21.98 0.048 0.45
F
rontiers in Marine Science
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MOCI predictors included winter and spring in yearx, and winter, spring, summer, and fall of yearx-1. N = 9 in all models and significance was set at p<0.1.
A B

D

E

C

FIGURE 6

Krill biomass predicted by seasonal MOCI in the previous year (yearx-1). Krill biomass (A) and Thysanoessa spinifera biomass (C) for the entire region
compared to Summer MOCI (yearx-1), and krill biomass (B), T. spinifera biomass (D), and Euphausia pacifica biomass (E) from the core region
compared to Spring MOCI (yearx-1). Coefficients of determination and significance are reported in Table 5.
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measured came from less than 7% of our acoustic samples (Table 7),

highlighting the importance of fine-scale sampling when attempting

to estimate biomass of swarming zooplankton and the location of

high-density aggregations. Models with limited spatial components

(ECOPATH and Atlantis) are not designed to capture this fine-scale

spatial variability, but should be capable of fitting or matching such

variability in response to physical forcing to provide realistic

evaluations of ecosystem dynamics. Similarly, while both fine-

mesh midwater trawl and bongo nets sample at small spatial

scales, they typically cannot be deployed in large enough numbers

to provide continuous distribution information. Acoustic sampling

of krill achieves this small-scale resolution while also collecting an

extensive spatial scale of data in a small amount of time. These

acoustic survey data clearly indicate that all three regions of the

study area support substantial krill biomass that exhibits

considerable interannual variability, likely in response to

oceanographic conditions. Previous ecosystem modeling studies

utilized acoustic survey data for evaluating model performance

for predicting interannual variation and intensity of krill hotspots

(Santora et al., 2013; Fiechter et al., 2020; Messié et al., 2022).

However, at the time of those studies, krill biomass estimates were

unavailable, so model evaluations were made based on relative

comparisons of hotspot location from observations and models.

Therefore, the krill biomass estimates developed in this study

provide an important step for informing krill biomass modeling

study design, addressing sensitivities to environmental variability,

and providing reference points for comparison with existing

models. Future effort should focus on developing krill species

biomass distribution models to complement existing models of

species occurrence and abundance inferred by trawls (Cimino et al.,

2020; Fiechter et al., 2020).

These could ultimately be used to compare krill-predator

distribution patterns to better understand species consumption

patterns and bioenergetic needs (Szesciorka et al., 2022).
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4.3 Implications for ecosystem monitoring

Annual estimates of krill derived from hydroacoustics were

positively associated with a relative krill index of abundance from

trawl nets. This correspondence, shown for the region of the most

robust sampling, suggests that acoustic data for the larger survey

region provide robust samples as well. There were notable years in

which the relationship between net data and acoustic data broke

down (2019, in particular). Net hauls in 2019 brought in very little

krill, but a biomass of 620 kmt of krill in the core region was

estimated from acoustics. This could be due to the different

sampling frequency of the two methods, as the acoustic data are

collected while ships are underway and therefore are based on

considerably greater spatial data than the sampling by nets which

are made on station points. In short, we are uncertain about this

discrepancy, which warrants further investigation of sampling,
TABLE 6 Comparison of reported krill biomass estimates from modeling and net sampling studies along the West Coast of the United States.

Source Region Estimate Reference

Acoustics Central & Northern California 1,750–2,000 kmt
26.3–30.1 mt km-2

This Study

ECOPATH Model Oregon/Washington 27.0 mt km-2 Field et al., 2006
Field, personal communication

ECOPATH Model Vancouver Island to Baja California 16.5 mt km-2 Koehn et al., 2016
Koehn, personal communication

Atlantis Model Central & Northern California 187 kmt Kaplan et al., 2012
Kaplan, personal communication

ROMS/Ecosystem Model Central & Northern California 960 kmt Fiechter et al., 2020
Feichter, personal communication

Net sampling Oregon 14.8 g m-2 Laurs, 1967

Net sampling Oregon 3 g m-2 Smiles and Pearcy, 1971

Net sampling Oregon 10.8 g m-2 Pearcy, 1972

Net sampling Washington 10.8 g m-2 Landry and Lorenzen, 1989

Acoustics/Model California 0–1,704 g m-2 Rockwood et al., 2020
Values are reported in the units given by the references. Note the equivalency of mt km-2 and g m-2.
TABLE 7 Breakdown of acoustic samples (n = 83,478) by order of
magnitude biomass bins and their contribution to the total
biomass measured.

Biomass
(mass m-2)

% of Total
Samples

% of Total
Biomass

0 10.8% 0%

0 – 1 mg 1.2% <0.1%

1 mg – 10 mg 5.2% <0.1%

10 mg – 1 g 14.1% 0.2%

1 g – 10 g 28.9% 4.4%

10 g – 100 g 33.3% 40.5%

100 g – 1 kg 6.2% 48.4%

>1 kg 0.1% 6.5%
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processing, and analytical details of 2019. One could, for example,

examine the cross-shelf transects for consistency in sampling, and

then investigate the covariance in regional indices from nets and

acoustics; these detailed analyses are beyond the scope of this paper.

The various calculations of krill biomass we present show a

range of estimates. We highlighted results derived from the

arithmetic mean of the raw data because this procedure does not

discount the important contributions of extremely large

aggregations to overall abundance. Both the median and

geometric mean calculations lessen the contributions of large

aggregations to estimates of krill abundance; median and

geometric mean-based estimates may be biased low. California

Current krill are known to aggregate on both the small scale of

swarms (10s–100s of meters; Mauchline, 1980; Siegel, 2000) as well

as larger scales (10s–100s of kilometers) along topographical

features such as canyons and the shelf break (Santora et al.,

2011a; Dorman et al., 2015; Santora et al., 2018). The high-

resolution hydroacoustic sampling used in this study (binned at

0.25-nmi horizontal by 10-m depth intervals) can resolve fine-scale

krill aggregations, but a statistical bias of this sampling is a highly-

skewed distribution of the raw data, due to many low and a few

large values (see Table 7 ). Indeed, the smallest 60% of our samples

accounted for <5% of the total biomass and the largest 6%

accounted for >50% of the total. The skewed distribution of krill

abundance data and the importance of patchy, dense aggregations

must be taken into consideration in developing realistic estimates of

abundance. This is accomplished using the arithmetic mean of the

raw data.

The majority of the results and discussion on uncertainty of

estimates is contained within Supplemental Material, but we

highlight here how variability in the length-frequency data used

in the calculations impacts biomass estimates. Length data are not

always available, and in this study, we lacked length data in three

years (2014, 2019, and 2021). For these years we used the average

length frequency distributions based on the other seven years of

sampling. In comparing biomass estimates using length-frequencies

from specific years versus using the climatological length-frequency,

we find very little effects on biomass (<3%; Table 3 vs. Table S3,

Table 4 vs. Table S4).
5 Conclusions

Acoustic-trawl surveys of krill in the California Current give us

a starting point from which we can better assess interannual

variability in prey fields and its potential effect on upper trophic

level consumers of economic and conservation importance. The

interannual variability in biomass was considerable, lowest during

the 2015–2016 marine heat wave/ENSO event and highest when

upwelling was strongest. Krill biomass was related to physical

conditions (MOCI) in the prior year’s spring and summer,

suggesting that growth to enable overwintering of krill may be an

important driver of krill abundance. These data suggest a direct
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connection to upper trophic level productivity since fish, birds, and

mammals all show similar variability to the ecosystem changes in

these years. As krill are a vital ecosystem component, empirically

derived abundance estimates are critical for future ecosystem

modeling to resolve key management and conservation questions

in the California Current system.
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