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A B S T R A C T

Forecasting abundance and understanding year class strength is key to the ecosystem-based fisheries manage-
ment of herring and other small pelagic fish. Using the San Francisco Bay herring population, we tested the
hypothesis that abundance (spawning stock biomass; SSB) could be predicted prior to the commencement of
annual fisheries using estimates of i) previous SSB (SSBlag1), ii) young-of-the-year production (YOY), and iii)
environmental conditions. A time series model including SSBlag1, YOY lagged 3 years (YOYlag3), and environ-
mental conditions in the season before spawning explained 67% of the variance in annual biomass, with better
predictive error in comparison with simpler models. YOYlag3 was by far the strongest predictor. It was robust
over the entire study period (1980–2017) and also for a more limited period (1991–2017) when observed
variance in SSB increased. We attribute the predictive power of YOY productivity to age structure, as almost 70%
of the population is comprised of young fish. We hypothesize that an age truncation effect, probably resulting
from a combination of long-term environmental effects and fisheries impacts, supports this model, which ef-
fectively predicts year class strength. Assuming the population age structure remains the same in the future, our
model provides management with an early warning indicator of upcoming SSB with a 3-year lead, which could
be applied in harvest control rules.

1. Introduction

Since the early days of fisheries oceanography, one of the principal
goals has been to understand and predict population fluctuations of
small pelagic fish relative to production, recruitment, and ocean con-
ditions (Hjort, 1914; Freon et al., 2005; Watanabe, 2007). Though
hundreds of studies on fish production and recruitment have been
conducted on a wide diversity of species, our ability to forecast small
coastal pelagic fish populations is fraught with issues, including weak to
non-existent stock-recruitment relationships (e.g., Stocker and Noakes,
1988) and non-stationary relationships (Myers, 1998). Today, with the
confounding effects of fisheries removals, which may exacerbate effects
of ocean conditions (Essington et al., 2015), and climate change, which
may cause fish redistributions (reviewed by Poloczanska et al., 2013),
the challenge of prediction has become both more acute and urgent.
Understanding how marine climate impacts future abundance is fun-
damental to stock assessment and designing and implementing appro-
priate harvest control rules (Lindegren et al., 2010; Hollowed et al.,
2013). In particular, a combination of environmental or fisheries-re-
lated changes to population age structure may result in unexpected

consequences for production, recruitment, and population dynamics
(Anderson et al., 2008).

Owing to their neritic distribution and centurial history of ex-
ploitation (e.g., Cushing, 1961), herring have been the focal point of
dozens of observational and modeling studies seeking to understand
and predict variation in abundance for management purposes. In
northern Europe, herring have been exploited since the 10th century,
and time series research on landings clearly shows decadal-scale fluc-
tuations in abundance relative to various interrelated meteorological
and hydrographic variables (Alheit and Hagen, 1997). Similar re-
lationships in herring abundance, growth, and size-at-age have been
established at interannual time scales using observations (e.g., Williams
and Quinn, 2000a,b; Beamish et al., 2004; Cardinale et al., 2009) and
models (e.g., Hay et al., 2008; Rose et al., 2008; Ito et al., 2015). In the
northeastern Pacific, Pacific herring (Clupea pallasii) are important for
fisheries and food chains (Beamish et al., 2004; Szoboszlai et al., 2015).
A recent meta-analysis of herring population trends and variability in
the California Current Ecosystem (CCE) showed a secular decline in
biomass estimates since 1980 for many stocks along the U.S. west coast,
but data were limited to a ∼30-year period (Thompson et al., 2017).

https://doi.org/10.1016/j.fishres.2018.04.020
Received 9 November 2017; Received in revised form 24 April 2018; Accepted 25 April 2018

⁎ Corresponding author.
E-mail address: wsydeman@faralloninstitute.org (W.J. Sydeman).

Fisheries Research 205 (2018) 141–148

0165-7836/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01657836
https://www.elsevier.com/locate/fishres
https://doi.org/10.1016/j.fishres.2018.04.020
https://doi.org/10.1016/j.fishres.2018.04.020
mailto:wsydeman@faralloninstitute.org
https://doi.org/10.1016/j.fishres.2018.04.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fishres.2018.04.020&domain=pdf


Notably, in the same study, stocks along the Canadian west coast stu-
died over a longer period (∼60 years) demonstrated decadal-scale
variability.

At the southern-most end of its range in the northeast Pacific, the
San Francisco Bay (SFB) herring stock biomass has become more vari-
able through time (Thompson et al., 2017), but nonetheless remains
relatively large compared to other stocks in the CCE south of British
Columbia (Siple and Francis, 2016). Variability in the SFB spawning
stock biomass (SSB) is poorly understood, with occasional biomass le-
vels low enough to trigger fisheries closures (e.g., 2009–2010; CDFW,
2017a). From November–March, adult herring enter SFB and spawn in
the shallow subtidal habitats of the shoreline. Upon hatching, larval fish
develop in the bay; juveniles typically migrate to the ocean in Sep-
tember–October (Fish et al., 2012). Management of the fishery on this
stock includes the following data collections: 1) annual fall-winter
surveys of spawning and egg deposition, conducted by California De-
partment of Fish and Wildlife (CDFW), which are subsequently scaled
up to estimate standing stock biomass, 2) monthly mid-water trawl
surveys of reproductive output by CDFW to estimate production of
young-of-the-year (YOY) (Feyrer et al., 2015), and 3) an annual general
assessment of ecosystem conditions before each spawning season
(CDFW, 2017a). A variety of regional measurements of environmental
conditions within SFB and in the adjacent ocean are collected during
monthly CDFW surveys, including measurements of temperature and
salinity. Other related environmental factors are available for synthesis,
including regional to large-scale ocean climate indicators. García-Reyes
and Sydeman (2017) synthesized many of these indicators into seasonal
Multivariate Ocean Climate Indicators (MOCI). MOCI couple the shared
variation in basin-scale drivers, such as the Pacific Decadal Oscillation
(PDO) and the North Pacific Gyre Oscillation (NPGO), with regional
oceanographic processes such as upwelling (e.g., Bakun upwelling
index) and local oceanic responses (e.g., temperature and winds).

We took a broad exploratory approach to understanding potential
environmental and biological predictors of the SFB herring population.
An exploratory approach was needed because prediction of population
fluctuations was a key goal of the study and both basin-scale and re-
gional environmental drivers are known to affect fish, seabirds, and
marine mammals of the central-northern California Current (e.g.,
Thompson et al., 2012; García-Reyes et al., 2013; Sydeman et al.,
2014). We therefore surmised that herring would be similarly re-
sponsive to drivers at multiple temporal and spatial scales. Moreover, it
is well known that environmental conditions within and outside SFB, in
the Gulf of the Farallones and even further afield, may strongly covary
(Cloern et al., 2010; Feyrer et al., 2015). Consequently, we test a gen-
eral hypothesis that lagged ocean conditions and herring productivity
can be used to predict fluctuations in the SFB herring population. We
expected herring biomass to be positively related to herring pro-
ductivity, lagged 2 or 3 years to the year in question and assuming that
higher productivity resulted in higher recruitment and higher biomass.
We expected herring biomass to be positively correlated with regional
upwelling and associated features (cold temperatures, high ocean sali-
nity, negative PDO/positive NPGO). We did not have a priori expecta-
tions concerning other features of the environment such as outflow of
freshwater into SFB, nor SFB temperature and salinity. To test this
hypothesis, we integrated herring population data with information on
bay and ocean conditions. This study is designed to contribute to a new
fisheries management plan (FMP) for the SFB herring fishery under
development by the State of California in partnership with commercial
fishers and the conservation community. Forecasting tools are needed
for SFB herring abundance assessments, management strategy evalua-
tion, and in application of harvest control rules that may be designed to
maintain escapement and productivity as well as the trophic role of
herring in the coastal ecosystem (Rice and Duplisea, 2014).

Ta
bl
e
1

En
vi
ro
nm

en
ta
l
an

d
he

rr
in
g
po

pu
la
ti
on

da
ta

us
ed

in
th
is

st
ud

y.
Pe

ri
od

of
da

ta
,r

es
ol
ut
io
n,

lo
ca
ti
on

/r
eg

io
n
an

d
so
ur
ce

ar
e
sp
ec
ifi
ed

.

D
at
a

La
be

l
Pe

ri
od

Lo
ca
ti
on

U
ni
ts

Te
m
po

ra
l
re
so
lu
ti
on

So
ur
ce

H
er
ri
ng

Sp
aw

ni
ng

st
oc

k
bi
om

as
s

SS
B

19
80

–2
01

6
SF

B
K
m
t

Se
as
on

al
su
m

ac
ro
ss

m
on

th
s
D
ec
–M

ar
,u

ps
ca
le
d
fr
om

eg
gs

to
K
m
t

C
D
FW

,
H
er
ri
ng

M
an

ag
em

en
t
Pr
og

ra
m

Tr
aw

lC
PU

E
A
ge

-0
,A

ge
-1
,a

nd
A
ge

-2
+

Y
O
Y
,A

ge
-1
,A

ge
-

2+
19

80
–2

01
5

SF
B

N
um

be
r
of

fi
sh

Se
as
on

al
av

er
ag

e
ov

er
se
ve

ra
l
m
on

th
s,

A
ge

-0
:

A
pr
–O

ct
,A

ge
-1
:
Fe

b–
A
pr
,A

ge
-2
+

:D
ec
–M

ar
.

C
D
FW

,
Sa

n
Fr
an

ci
sc
o
Ba

y
St
ud

y/
In
te
ra
ge

nc
y
Ec

ol
og

ic
al

Pr
og

ra
m

fo
r
Sa

n
Fr
an

ci
sc
o
Es
tu
ar
y

H
er
ri
ng

C
on

di
ti
on

In
de

x
H
C
I

19
84

–2
01

5
SF

B
N
o
un

it
s

Se
as
on

al
av

er
ag

e
of

Fu
lt
on

’s
K
ac
ro
ss

w
in
te
r
m
on

th
s

C
D
FW

,
A
BM

P/
H
M
R

En
vi
ro

nm
en

ta
l

M
id
w
at
er

tr
aw

ls
te
m
pe

ra
tu
re

an
d

sa
lin

it
y

Tr
aw

l-T
Tr
aw

l-S
19

80
–2

01
6

35
st
at
io
ns

th
ro
ug

ho
ut

SF
B

°C
,P

SU
3-
m
on

th
ru
nn

in
g
av

er
ag

es
,o

ve
r
9
m
on

th
s
ea
ch

ye
ar

C
D
FW

,
Sa

n
Fr
an

ci
sc
o
Ba

y
St
ud

y/
In
te
ra
ge

nc
y
Ec

ol
og

ic
al

Pr
og

ra
m

fo
r
Sa

n
Fr
an

ci
sc
o
Es
tu
ar
y

Sa
cr
am

en
to

R
iv
er

D
el
ta

ou
tfl
ow

O
ut
fl
ow

19
96

–2
01

6
SF

B
A
cr
e-
ft
.

3-
m
on

th
ru
nn

in
g
av

er
ag

e
C
al
if
or
ni
a
D
ep

ar
tm

en
t
of

W
at
er

R
es
ou

rc
es

Fa
ra
llo

n
Is
la
nd

s
se
a
su
rf
ac
e
sa
lin

it
y

Fa
r-
SS

S
19

79
–2

01
5

G
ul
f
of

th
e
Fa

ra
llo

ne
s

PS
U

3-
m
on

th
ru
nn

in
g
av

er
ag

e
SI
O
,S

ho
re

St
at
io
n
Pr
og

ra
m

Bu
oy

N
26

se
a
su
rf
ac
e
te
m
pe

ra
tu
re

N
26

-S
ST

19
82

–2
01

5
37

.8
°N

,
12

2.
8°
W

°C
3-
m
on

th
ru
nn

in
g
av

er
ag

e
N
at
io
na

l
D
at
a
Bu

oy
C
en

te
r/
N
at
io
na

l
O
ce
an

ic
an

d
A
tm

os
ph

er
ic

A
dm

in
is
tr
at
io
n
(N

O
A
A
)

Ba
ku

n
U
pw

el
lin

g
In
de

x
BU

I
19

79
–2

01
5

39
°N

m
3
/s
/1

00
m

3-
m
on

th
ru
nn

in
g
av

er
ag

e
Pa

ci
fi
c
Fi
sh
er
ie
s
En

vi
ro
nm

en
ta
l
La

bo
ra
to
ry
/N

O
A
A

M
ul
ti
va

ri
at
e
El

N
iñ
o
So

ut
he

rn
O
sc
ill
at
io
n
In
de

x
M
EI

19
79

–2
01

5
Tr
op

ic
al

Pa
ci
fi
c

N
o
un

it
s

3-
m
on

th
ru
nn

in
g
av

er
ag

e
Ea

rt
h
Sy

st
em

R
es
ea
rc
h
La

bo
ra
to
ry
/N

O
A
A

Pa
ci
fi
c
D
ec
ad

al
O
sc
ill
at
io
n

PD
O

19
79

–2
01

5
N
or
th

Pa
ci
fi
c

N
o
un

it
s

3-
m
on

th
ru
nn

in
g
av

er
ag

e
Jo

in
t
In
st
it
ut
e
fo
r
th
e
St
ud

y
of

th
e
A
tm

os
ph

er
e
an

d
O
ce
an

,
U
ni
ve

rs
it
y
of

W
as
hi
ng

to
n

N
or
th

Pa
ci
fi
c
G
yr
e
O
sc
ill
at
io
n

N
PG

O
19

79
–2

01
5

N
or
th

Pa
ci
fi
c

N
o
un

it
s

3-
m
on

th
ru
nn

in
g
av

er
ag

e
E.

D
i
Lo

re
nz

o
M
ul
ti
va

ri
at
e
O
ce
an

C
lim

at
e
In
di
ca
to
r

M
O
C
I

19
79

–2
01

5
C
en

tr
al

C
al
if
or
ni
a

(3
4.
5–

38
°N

)
N
o
un

it
s

Se
as
on

al
va

lu
e
fo
r
w
in
te
r,

sp
ri
ng

,s
um

m
er
,a

nd
fa
ll

Fa
ra
llo

n
In
st
it
ut
e

W.J. Sydeman et al. Fisheries Research 205 (2018) 141–148

142



2. Methods

2.1. Herring data

Information on the SFB herring population (SSB, productivity,
condition, age structure) has been collected by the CDFW since the
early 1970s, with consistent methodology from ∼1979 to the present
for most variables (Fish et al., 2012; CDFW, 2017b). For our analyses
we used: (1) estimates of herring SSB based on egg deposition surveys
conducted by CDFW in winter and summed across the SFB (Watters
et al., 2004), (2) YOY productivity estimates, proxied by catch-per-unit-
effort (CPUE; number caught/tow volume*10,000) of age-0, age-1, and
age-2 fishes from CDFW’s Bay Study midwater trawl surveys conducted
monthly at 35 stations, summed across stations and averaged across
months (April–October for CPUE age-0, February–March for CPUE age-
1 and December–March for CPUE age-2+), thereby producing a single
annual estimate for each age class (Fleming, 1999; Fish et al., 2012),
and (3) Fulton’s K condition index (Ricker, 1975; Nash et al., 2006) in
which K=100*wet mass(g)/length3(cm); this index is developed from
fisheries-independent surveys conducted since 1984 (Table 1; CDFW,
2016). More details of the data sets and methods used to obtain these
data are provided in Supplementary Material (see Table SM1, Figs.
SM1–SM3). In relation to herring biomass, we examined four relevant
predictors: previous SSB lagged by 1 year, CPUE age-0 (hereafter re-
ferenced as YOY) lagged 1, 2, and 3 years, CPUE age-1 lagged 1, 2, and
3 years, and Fulton’s K lagged 1, 2, and 3 years, for a total of ten herring
covariates. In each of these cases, we expected relationships to be po-
sitive, assuming that greater productivity and body condition resulted
in larger future biomass.

2.2. Environmental data

We compared herring SSB with anomalies in environmental data
taken within SFB as well as in the adjacent Gulf of the Farallones, and
Pacific Ocean basin-scale climate indices. Local data (Table 1) included
temperature and salinity of the water column (hereafter Trawl-T,
Trawl-S) collected at each of the 35 stations in SFB during the midwater
trawl surveys conducted by the CDFW, delta outflow into SFB (Outflow,
see below), sea surface temperature from the NOAA/NDBC buoy 46026
located in the Gulf of the Farallones (N26-SST), sea surface salinity
measured at the Farallon Islands (Far-SSS), and the 39°N Bakun Up-
welling Index provided by NOAA with a 3° latitude resolution (BUI).
The Net Delta Outflow Index is described: https://www.water.ca.gov/
Programs/Environmental-Services/Compliance-Monitoring-And-
Assessment/Dayflow-Data. We also used the climate indices Multi-
variate ENSO Index (MEI), PDO, NPGO, and MOCI (Supplementary
Tables SM2 and SM3, and Figs. SM4–SM9). Environmental data had a
monthly resolution, which we smoothed to seasonal values using

averages across months or running monthly means. To explore the use
of these data as predictors of SSB, we took 3-month running means of
data one month at a time from May to December, except for MOCI
which already had a 3-month resolution. We examined running means
in environmental conditions using time lags of 1–3 years to explore
leading relationships between YOY abundance and SSB in subsequent
years. For this exploratory analysis, we evaluated a total of 297 cov-
ariates (11 environmental indices, 9 running means across months
[including seasonal averages], and 3 annual lags). While a large
number of potential covariates were examined, we used this analysis to
select the lags at which covariates appeared best related to SSB, based
on correlation coefficients (see below), and then included these in time
series models developed using multiple regression.

2.3. Forecasting herring biomass

To date, estimates of the current year SSB have been used for pro-
jection of subsequent SSB for SFB herring management. To enhance this
approach, we considered how annual indices of SSB were related to
herring productivity and temporal environmental variability as well as
previous SSB (expressed as SSBlag1). For SSB, the index reflected
summed estimates of biomass from December through March (“year” is
designated as that of the January considered, i.e., December
1980–March 1981 is assigned as biomass 1981). For production, we
averaged monthly CPUE of age-0 fish from trawl surveys designated as
April through October (YOY); CPUE age-1 was February through April
(Age-1), and CPUE age-2+ (Age-2+) was December–March. During
the first year of data collection (1979) only January–March were used
since data from the preceding December were not available. SSB and
productivity time series had no significant trends through time (see also
Thompson et al., 2017). We did not transform SSB used in the model as
the original data were only roughly non-normal, and the forecasting
model performance was better (higher R2 and lower Akaike Information
Criteria, AIC) using untransformed SSB.

To evaluate potential terms for use in forecasting models, we first
explored correlations between SSB and indicators of herring pro-
ductivity and condition (Table 2) and environmental variability
(Table 3). We used Spearman rank correlations and assumed sig-
nificance when p < 0.05. We correlated SSB for each year with pro-
ductivity and environmental data for lags of up to three years. Subse-
quently, based on promising correlations, we developed multivariate
models of biomass using forward and backward stepwise regression
that included select herring indicators (e.g., SSBlag1, YOYlag2, YOYlag3;
see Results) and one environmental variable at a time. We included not
only the environmental indices with best correlations (higher correla-
tions, lowest p-values and consistent correlations in more than two
contiguous 3-month averages), but also indices that have been shown to
influence herring in other locations and seasons (i.e., salinity).

To select the best model we considered the AIC and adjusted R2

values for all years from 1991 through 2016 (see below for justification
of this period). We tested the uncertainty in model selection using a
jackknifing technique where we removed one year at a time and re-
computed AIC and adjusted R2 statistics. Jackknifing is a standard
technique to estimate biases in model selection and parameter estima-
tion in regression; the reader is referred to Wu (1986) for more in-depth
descriptions of this procedure. We also evaluated the skill of the best
model by predicting values for all years and subsequently removed one
year of data at a time, recalculated the model using the remaining
years, and then used this model to predict the removed year value (i.e.,
a cross-validation procedure, see Kleinbaum et al., 1988). We then
quantified the skill of prediction (i.e., predictive error, Table 4) by
averaging the error of the predicted values over all years versus ob-
served over all years (expressed in percentage). All analyses were done
in Matlab v.2017.

Table 2
Spearman rank correlation (ρ) and Pearson correlation (expressed as R2) be-
tween spawning stock biomass (SSB) and herring population indicators. Lag, in
years, is shown in parentheses. Only nominally significant correlations
(p < 0.05) are shown, and correlations with p-values < 0.005 are shown in
bold.

Indicator 1979–2015 1991–2015

SSB ρ=0.65 (lag 1) ρ=0.51 (lag 1)
R2=0.41 (lag 1) R2= 0.34 (lag 1)

Age-2+ none R2= 0.24 (lag 1)
Age-1 ρ=0.35 (lag 3) ρ=0.42 (lag 3)

R2= 0.22 (lag 3)
YOY ρ=0.55 (lag 2) ρ=0.57 (lag 2)

ρ=0.64 (lag 3) ρ=0.70 (lag 3)
R2=0.25 (lag 2) R2=0.31 (lag 2)
R2=0.34 (lag 3) R2=0.57 (lag 3)

HCI none none
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3. Results

SSB showed less variability prior to 1990, particularly during the
mid to late 1980s (Fig. 1). After 1990, variability increased (see also
Thompson et al., 2017). The interannual coefficient of variation of the
early period (1980–1989) was 30% vs. 97% after 1990. Even when
2006 was removed (a data point one order of magnitude above any
other and therefore considered an outlier), the coefficient of variation
was 78% for the period 1991–2016. Average biomass for the second
period dropped to 28.9 thousand metric tons (Kmt) versus 45.1 Kmt
(24.9 Kmt without 2006) in the previous period. There was no sig-
nificant linear trend (p > 0.05) in the entire time series due to the
second period of strong variability. While we focused on the period
1991–2016 for forecasting, we tested the correlation between biomass
and indicators in two periods: the entire data period (1979–2016) and
the period with higher variability (1991–2016). This result corresponds
to a well-known shift in biological systems during the late 1980s to
early 1990s (Hare and Mantua, 2000; Sydeman et al., 2001; Thompson
et al., 2017).

Correlations with SSBlag1 were stronger for the entire period than
for the period after 1990, which is consistent with the lower variability
of SSB before 1990 (Table 2). This pattern indicates that SSBlag1 became
less reliable as a forecasting indicator after ca. 1990. Correlations of
SSB with YOY were similar for both periods at lag 2 years, but higher
for the second period for lag 3 years (Fig. 2), indicating that this re-
lationship became stronger through time. No correlations with the
condition index (HCI) and CPUE age-2+ were found.

Correlations between SSB and environmental indicators from 3-
month averages at different lags showed that for the entire period
(1979–2016) only the upwelling index (BUI) had a nominally sig-
nificant correlation at lag 3 years (Table 3). In contrast, for the period
1991–2016 there were significant correlations with many of the en-
vironmental indices from San Francisco Bay, the Gulf of the Farallones,
and large-scale climate indices (Table 3), however, notably, not with
BUI. Trawl-T, Far-SSS and MEI did not show significant correlations
with SSB for either period. All indicators that correlated significantly in
the second period did so at lag 3 years, except NPGO, which was also
correlated at lag 2 years.

We tested multiple regression models in the following order: 1) two
univariate models, one with SSBlag1 as a predictor and another with
YOYlag3 as a predictor (Table 4, Fig. 3), 2) a model with both of these
predictors, and 3) multivariate models that include these two predictors
plus one environmental indicator. We used the period 1991–2016 in the
regression models, as it is the period with best environmental correla-
tions and is more relevant for present-day forecasting. Statistics for the
first two univariate models, the bivariate model and the best of the
multivariate models, are shown in Table 4. YOYlag3 was the best single
predictor of SSB (R2=0.56), but the model fit improved by adding
SSBlag1 (R2= 0.58) and an environmental variable (Fall, i.e., Octo-
ber–December, MOCI): adjusted R2 increased to 0.67. Note that the
model included MOCI squared, which may reflect a non-linear effect of
the environmental terms. Fig. 3 shows the modeled SSB versus ob-
servations. Including other environmental variables in regressions did
not improve model fit or the explanatory power.

A jackknife analysis of model selection based on AIC and adjusted
R2 criteria was also performed. In this analysis, we removed one year at
a time, and recalculated the AIC and adjusted R2 values for the five
model structures shown in Table 4; in all, a total of 130 models were
estimated. Jackknifing indicated that in 24 of 26 instances (92.3%), the
model including YOYlag3, SSBlag1, and Fall MOCI was selected. Jack-
knifing also gave an estimation of the accuracy of the model predic-
tions, which we report as the average predicted error (Table 4). The
model using only SSBlag1 had an average predicted error of 119%, while
using only YOYlag3 reduced that error to 77%. The lowest predictive
error, 64%, was found for the model including SSBlag1, YOYlag3, and
MOCI. Skill was relatively similar for a model including buoy (N26) SST

Table 3
Spearman rank correlations (ρ) and R2 between SSB and environmental in-
dicators for the periods 1979–2016 and 1991–2016. Only nominally significant
correlations (p < 0.05) are shown. Months (3-month averages) with significant
correlations and lags are indicated in parentheses. An asterisk (*) indicates
significant correlations for lags of 2 and 3 years.

Indicator 1979–2016 1991–2016

Trawl-T – –
Trawl-S – ρ=0.48

R2= 0.08
(Aug–Oct, lag 3)

Outflow – ρ=−0.59
R2= 0.13
(Jul–Sep, lag 3)

Far-SSS – –
N26-SST – ρ=−0.41

R2= 0.1
(May–Jul, lag 3)

BUI ρ=−0.41 –
R2= 0.18
(Oct–Dec, lag 3)

MEI – –
PDO – ρ=−0.46

R2= 0.11
(Apr–Jun, lag 3)

NPGO – ρ=0.45
R2= 0.15
(Jul–Sep, lag 3)*

MOCI – ρ=−0.46
R2= 0.14
(Jul–Sep, lag 3)

Table 4
Regression model results and statistics used to predict SFB herring SSB,
1991–2016. F-statistics, p-values, adjusted R2, and AIC values are given for
forward stepwise regression (backward selection procedures resulted in the
same models). Predictive error is the averaged prediction errors from the cross-
validation. Lag in years for each term is indicated with subscript. Fall MOCI
correspond to the months October to December, and N26-SST are values from
the 3-month average from September to November.

Term Coefficient t-stat p-value

SSB∼ SSBlag1

F1,22= 11.3, p-value < 0.01, Adjusted R2=0.31, AIC= 204, Predictive
Error= 119%

SSBlag1 0.57 3.36 < 0.005

SSB∼YOYlag3

F1,23= 31.1, p-value < 0.0001, Adjusted R2= 0.56, AIC= 201, Predictive
Error= 77%

YOYlag3 0.025 6.42 < 0.0001

SSB∼ SSBlag1+YOYlag3

F2,21= 16.6, p-value < 0.0001, Adjusted R2= 0.58, AIC= 193, Predictive
Error= 81%

SSBlag1 0.25 1.58 0.13
YOYlag3 0.02 3.85 < 0.001

SSB∼ SSBlag1+YOYlag3+ (Fall MOCIlag1)2

F3,20= 16.3, p-value < 0.0001, Adjusted R2= 0.67, AIC= 188, Predictive
Error= 64%

SSBlag1 0.31 2.15 < 0.05
YOYlag3 0.02 3.13 < 0.01
(Fall MOCIlag1)2 −1.1 −2.59 < 0.05

SSB∼ SSBlag1+YOYlag3+N26-SSTlag1

F3,20= 14.6, p-value < 0.0001, Adjusted R2= 0.64, AIC= 190, Predictive
Error= 63%

SSBlag1 0.28 1.90 0.07
YOYlag3 0.018 3.57 < 0.005
N26-SSTlag1 −6.28 −2.17 < 0.05
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instead of MOCI.

4. Discussion

We hypothesized that lagged herring productivity and ocean con-
ditions could be used to forecast herring fluctuations in the San
Francisco Bay population, indexed by SSB. The best model we

developed indicated that SSB depends on the abundance of the
spawning population from the previous year, productivity as indicated
by YOY from three years prior, and environmental conditions in the fall
season immediately prior to spawning, which are best proxied by the
Multivariate Ocean Climate Index (MOCI). The fall MOCI indicates that
environmental conditions from October–December, prior to the herring
spawning season, contributes to predicting SSB; this relationship may
reflect the effects of the environment on spawners and their body
condition, though we did not find a relationship between measures of
body condition and SSB. Overall, this model explained 67% of the
variance in SFB herring SSB from 1991 through 2016. A similar model,
including SST from NOAA buoy N26 (September through November)
instead of the MOCI, explained 64% of the variance, but was not se-
lected based on AIC criteria or predictive skill. These models utilize
environmental data coincident with the spawning season, whereas data
preceding the spawning season may be of more benefit to management,
despite having slightly lower explanatory power and skill.

Models including only SSB or YOY had lower explanatory power
(31% and 56%, respectively), but were significant, regardless of in-
clusion of environmental parameters. Therefore, we conclude that
herring population parameters are more important than environmental
parameters to prediction, and could be used in annual stock assess-
ments. Current fishing quotas are based on the prior season’s estimate
of SSB, with harvest percentages set to 5% since 2010–11 (CDFW,
2016). Thus, our approach could enhance the current stock assessment
and harvest control process, which involves making an annual estimate
of abundance from the winter egg deposition surveys (Watters et al.,
2004). Overall, the variance explained by our model was similar to
other models developed for herring populations worldwide (e.g.,

Fig. 1. Herring spawning stock biomass (SSB, Kmt) for the San Francisco Bay estimated from egg deposition surveys, summed from December to March each year.
Note the anomalously high SSB in 2006.

Fig. 2. Linear model predicting herring SSB using YOYlag3 as the independent
variable, for the period 1991–2015. The black line shows the predicted values
and the dashed lines indicate the 95% confidence intervals. YOYlag3 explains
56% of herring stock biomass in the current year.

Fig. 3. Observed and modeled SFB SSB time series for
1991–2016. Note there is no observation for 2006, but pre-
dicted values indicate ∼37 K metric tons (Kmt). Observed SSB
is shown in blue and other colors indicate the different models
for SSB that include the terms YOYlag3, SSBlag1, Fall MOCIlag1,
and NDBC Buoy 46026 September–November SSTlag1. (For
interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Axenrot and Hansson, 2003; Cardinale et al., 2009; Schweigert et al.,
2010). For example, using a similar 3-variable approach with lagged
SSB, YOY productivity, and the environment, Axenrot and Hansson
(2003) explained a total of 93% of the variation in the incoming year-
class. YOY were most strongly correlated with adjusted R2= 0.42,
compared to our adjusted R2= 0.57 for the period 1991–2017; SSB was
the weakest predictor. They used the North Atlantic Oscillation (NAO),
a large-scale climate index to proxy environmental conditions im-
portant to herring recruitment, finding a strong relationship with ad-
justed R2=0.35, compared to adjusted R2= 0.09 for the best en-
vironmental variable in our study. Mechanistically, Axenrot and
Hansson argued that food availability and mild spring conditions, fac-
tors conducive to fecundity and larval growth and survival, were be-
hind the correlation with the NAO, but they also considered that mild
winters could affect the phenology (timing) of spawning, a possibility
we consider for SFB spawners as well.

4.1. Stationarity in predictor variables

SSBlag1 and current SSB were better related over the entire time
series (1979–2016), which included years of relative stability, rather
than during the latter period of greater population variability
(1991–2016). The correlations between SSBlag1 and current SSB ex-
plained 40% of the variance from 1979 to 2016, in comparison to 34%
of the variance from 1991 to 2016, indicating no substantial change in
the predictive power of this relationship over time. This modest change
could be reflective of greater serial correlation in SSB in the early
period, which is apparent upon examination of the data.

In contrast, productivity (YOY) was a better predictor of SSB from
1991 through 2016 (57% of the variance explained), compared to the
overall time series, 1979–2016 (34% explained). Unlike SSBlag1, YOY
explained only 2% of the variance in SSB in the early period. While
SSBlag1 and productivity showed relationships with SSB throughout the
history of SFB herring population monitoring, only SSBlag1 showed
reasonable stationarity, a key characteristic for predictive models to be
used in a management context. Mechanistically, the 3-year lagged
correlation of YOY with SSB is consistent with maturity at age 2–3 years
for the SFB population (O’Farrell and Larson, 2005).

4.2. Environmental covariates

The environmental variables MOCI and SST are indicators of ocean
conditions prior to spawning, leading SSB measurements, but only on
the scale of months. Both MOCI and SST are proxies for coastal up-
welling and current transport processes, including water mass incur-
sions from the south and north (Checkley and Barth, 2009). Oceanic
water temperatures and regional climate influences co-vary with con-
ditions within SFB, and indicate that warmer temperatures lead to
lower SFB herring SSB. The variance explained in correlations between
SSB and environmental indicators increased after 1990, suggesting that
herring became more sensitive to environmental variability after the
regime shift of the late 1980s/early 1990s (Hare and Mantua, 2000).
Sydeman et al. (2013) showed that ocean-climate variability associated
with the NPGO shifted after 1990, so the change in herring responsive
to the environment may be related to strengthening of the NPGO at that
time. Cloern et al. (2010) also indicated a general increase in the
abundance of a suite of species in SFB around 1990, also possibly
mediated by changes in the NPGO. The environmental term in our
model improved estimates over a model using only herring population
indicators, but its contribution was quite small (∼10%). In short, warm
ocean temperatures appear to impact herring biomass negatively; this
conclusion is consistent with previous results indicating that herring
populations in the NE Pacific generally prefer colder conditions (e.g.,
Schweigert et al., 2010).

Conditions in SFB itself were not included in our forecasting model.
This result may mean that ocean conditions are more important than

bay conditions in setting year class strength and explaining variation in
SSB, but it is likely that environmental factors in both estuarine and
marine habitats are important (O’Farrell and Larson, 2005; Reum et al.,
2011). Some conditions, such as temperature, co-vary between the
ocean and bay, making it difficult to resolve which habitat is more
important. Kimmerer (2002) found higher SFB herring egg production
and egg survival during periods of high outflow from the delta (more
fresh water). However, we found no correlations with SFB delta inflow
around the timing of spawning at 0 or 1-year lags. Salinity showed
significant, although weak correlations with SSB at a 3-year lag, which
suggests a possible influence on survival, perhaps for the YOY age class.
Laboratory studies indicate higher survival of larvae at lower levels of
salinity (Griffin et al., 2004). Significant correlations between salinity
and YOY were also found for a lag of one year (ρ=0.55, p < 0.01,
previous year April–June). However, this correlation was with salinity
in the Gulf of the Farallones, not in SFB; although salinity in these two
locations co-varies (see Fig. SM5), salinity in the gulf is related to
oceanographic processes, not only SFB discharge processes.

Mechanistically, the shift in herring SSB variance after ∼1990, the
relationships established for herring and other species (Cloern et al.,
2010) both within and outside SFB, and the general importance and
role of upwelling in the region (e.g., García-Reyes et al., 2013) suggest
that productivity, food supply, and trophic relationships are possible
mechanisms of response between the environment and SFB herring (see
also Ito et al., 2015; Thompson et al., 2017). However, as noted above,
the environmental component to predicting SSB was small and (perhaps
more importantly) short-term, with fall MOCI immediately preceding
the winter spawning season negatively influencing biomass. This timing
suggests that a short-term behavior mechanism may be at work. Indeed,
in this case it is hard to imagine how a longer-term trophic mechanism
could lead to lower or higher biomasses on the scale of a few months.
Instead positive (i.e., warmer) MOCI values in fall may affect the timing
of migration into SFB, leading to changes in SSB. Warmer conditions
may lead to a delayed or deferred migration into SFB and spawning
effort. If sufficiently delayed, overall annual SSB could be reduced. High
resolution information on timing of herring spawning would be re-
quired to determine how environmental conditions affect migration
patterns, but given the short-term nature of the response and the fact
that other diadromous fish are known to trigger migration to spawning
ground in relation to environmental conditions (e.g., Mundy and
Evenson, 2011), we consider this mechanism plausible for SFB herring.

4.3. Age structure and forecasting

Our model of herring SSB functions partly because the vast majority
of the SFB population is comprised of younger age classes (ages 2 and
3), representing newly-recruited fish (Fig. 4). Therefore, we interpret
our model as effectively predicting recruitment/year class strength.
Other models focusing on year class strength have also been reasonably
successful (e.g., Axenrot and Hansson, 2003). This interpretation is
supported by the fact that the YOYlag3 relationship was selected in the
final best model. By age 3, most of the fish would have matured, while
the proportion of the population that is mature at age 2 may be more
variable between years, depending upon environmental conditions. We
do not know, however, if maturity-at-age has changed over time.

As can also be seen in Fig. 4, there has been a modest long-term
decrease in the proportion of fish aged 6+ years over the study period,
which suggests truncation of the age structure in this population. Other
herring populations are typically comprised of a larger percentage of
fish in older age classes (e.g., Hay et al., 2008). Corresponding with the
decrease of older fish, the proportion of 2- and 3-year-old fish appears
to have increased through time, but more research is needed to de-
termine if this apparent pattern is robust. A complexity in under-
standing evident changes in age structure is that the proportion of 4-
and 5-year-old fish appears to increase periodically after major El Niño
Southern Oscillation (ENSO) events have affected the central California
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Current Ecosystem (e.g., 1992–1994, 1998–2000; Jacox et al., 2016).
This pattern suggests that ENSO negatively impacts recruitment/year
class strength, with a resulting short-term increase in the relative pro-
portion of age-4 and age-5 fish in the population. It is also possible
ENSO is affecting maturation as reduced body condition is observed
with the ocean warming that occurs during ENSO (CDFW, 2017b).

4.4. Implications for management

Future research on age structure, potential age truncation effects,
and the effects of fishing mortality in general is warranted, both with
respect to forecasting population abundance as well as assessing po-
tential fisheries impacts. In particular, we think that investigating the
nexus of environmental influences and fisheries effects could be fruitful
for management. While it is a reasonably clear hypothesis that en-
vironmental events affect age structure, some of these changes may be
aliased by fisheries effects. For example, the fishery has progressively
reduced mesh size in order to maintain catch, but as a consequence,
smaller (and younger) fish have been targeted (CDFW, 2017a,b).
Therefore, models of age structure for this population could provide
interesting advice for management regarding mesh size. Relative to our
forecasting model, understanding how the effects of age structure may
be influencing the relationship between YOYlag3 and SSB would provide
insight into the potential long-term value of this model for manage-
ment.

This study is significant as herring population fluctuations are dif-
ficult to predict. Moreover, for our study population, a new Fisheries
Management Plan is under development by the State of California, and
early forecasts of abundance are needed for application of harvest
control rules. While our model development was successful overall,
model predictions were not always accurate. In particular, low SSB
values (e.g., 2003 and 2016) were not always well predicted. Given
these kinds of constraints, as well as the apparent non-stationarity in
predictive relationships, we recommend that this model be retested
annually. Our model has several notable advantages with respect to
retesting: it is very simple, based on readily available information, and
has relatively high predictive power. CDFW collects information on
herring YOY production annually and plans to continue this effort for
the foreseeable future. The environmental data used in the model are
also regularly updated and readily available. The model itself can be
easily run in simple spreadsheet programs. Most importantly, however,
the model provides a 3-year lead to managers on potential herring year
class strength. Assuming that age structure remains consistent into the
future, model forecasts of SSB could be reasonably applied in harvest
control rules to better manage the fishery for both the stock and local

ecosystem.
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